Chapter # 4: Programmable and Steering Logic

41

Chapter Overview

* PALs and PLAs

* Non-Gate Logic
Switch Logic
Multiplexers/Selecters and Decoders
Tri-State Gates/Open Collector Gates
ROM

» Combinational Logic Design Problems
Seven Segment Display Decoder
Process Line Controller
Logical Function Unit
Barrel Shifter

42

PALs and PLAs

Pre-fabricated building block of many AND/OR gates (or NOR, NAND)
"Personalized" by making or breaking connections among the gates

Programmable Array Block Diagram for Sum of Products Form

43

PALs and PLAs
Key to Success: Shared Product Terms

Equations
FO=A +B'C
Example: F1=AC + AB
F2=B'C' + AB
F3=B'C + A

Input Side:

1 =asserted in term
0 = negated in term
- =does not participate

Personality Matrix

Output Side:

1 =term connected to output
0 = no connection to output

4-4

PALs and PLAs

Example Continued
A B C

PALs and PLAs

Example Continued

All possible connections are available A B C)
? :? X? before programming |; [7— [7— Unwanted connections are "blown"
\ AB
— | } .
o —/BC
AlC J
J /BIC
—])
A AC
) TR
3 L L L
= T ™ U1 T Note: some array structures
work by making connections
rather than breaking them EO F1 E2 E3
F1 F2 F3 F4
45 4-6
PALs and PLAs PALs and PLAs
Alternative representation for high fan-in structures Design Example ABC
i N N
. Multiple functions of A, B, C M M ABC
. } A
. Short-hand notation F1=ABC
. so we don't have to) B
. draw all the wires! F2=A+B+C) c
F3=ABC) A
TS L) B
FA=A+B+C =\ c
ABCD F5 = A xor B xor C) ABT
V\IZ‘_\IZV\IZV\IZ F6 = A xor B xor C L/ nee
™\ AB %1 nBT
[\ /A/IB Notation for implementing ABT
= ciD FO=AB + A'B’ = .
) F1=CD' + C'D
— /CD) ABC
— Frre D e
AB+/AIB" c/p+/CD FI F2 F3 F4 F5 F6

47

48

PALs and PLAs PALs and PLAs

What is difference between Programmable Array Logic (PAL) and Design Example: BCD to Gray Code Converter
Programmable Logic Array (PLA)? Truth Table

K-maps

PAL concept : implemented by Monolithic Memories
(substrate is active materialsuch as semiconductor silicon)
programmable AND array but constrained topology of the OR Array
connections between product terms are hardwired
the higher the OR gate fanins, the fewer the functional outputs from }

PAL {

A given column of the OR array
° has access to only a subset of —_—
the possible product terms

1

|

[]
Minimized Functions: }
W=A+BD+BC
X=BC
PLA concept : generalized topologies in AND and OR planes Y=B+C e
take advantage of shared product terms Z=ABCD+BCD+AD +B'CD’
slower
4-9
PALs and PLASs PALs and PLASs
Programmed PAL: ':\Lic E,_’ Code Converter Discrete Gate Implementation
MM MM
L) A
DS BD 2 S
L BC /)
s D D
B/C J o A N\
S < B
eeej L) o J D ~
T 0 - 3 2
5 ° Ll
[0 p- .J
S <
D11 P B
» 0 g
S o
D
L/)
B BCD P‘ b |
[A/l
[~ clb
\ “ “ “) 4 SSI| Packages vs. 1 PLA/PAL Package!
4 product terms per each OR gate
W XY Z

4-11

PALs and PLAs
Another Example: Magnitude Comparator

Non-Gate Logic

AB=CD AB#CD AB<CD AB>CD ABCD
- | S
N M
ABTD
1 L/
[] LJ) ABTD
[] } T [] } _x__D ABCD
{ [] { Sl il D ABCD
0 H D, st
} AC
*—D BD
1 0 o
] D ABD
T :) BCD
1] [L e
H) BCD
| | | I |
EQ NE LT GT

4-13

Introduction

AND-OR-Invert Generalized Building Blocks
PAL/PLA Beyond Simple Gates

Kinds of "Non-gate logic":
* switching circuits built from CMOS transmission gates
* multiplexer/selecter functions
» decoders
« tri-state and open collector gates

» read-only memories

4-14

Steering Logic: Switches
Voltage Controlled Switches

Gate
| Oxidg_—"|

\)<n-type Si

p-type Si

"n-Channel MOS"
Metal Gate, Oxide, Silicon Sandwich

Diffusion regions: negatively charged ions driven into Si surface
Si Bulk: positively charged ions

By "pulling" electrons to the surface, a conducting channel is formed

4-15

Steering Logic
Voltage Controlled Switches

Logic 1 on gate,
Source and Drain connected

5 Logic 0 on gate,
Source and Drain connected

4-16

Steering Logic
Logic Gates from Switches

Inverter NAND Gate

NOR Gate

Pull-up network constructed from pMOS

transistors

Pull-down network constructed from nMQOS

transistors

4-17

Steering Logic
Inverter Operation

Inputis 1

Pull-up does not conduct
Pull-down conducts
Output connected to GND

L

Inputis O

Pull-up conducts

Pull-down does not conduct
Output connected to VDD

4-18

Steering Logic
NAND Gate Operation

X

X

A=1B=1

Pull-up network does not conduct
Pull-down network conducts
Output node connected to GND

X
X

A=0,B=1

Pull-up network has path to VDD
Pull-down network path broken
Output node connected to VDD

4-19

Steering Logic

NOR Gate Operation

A=0,B=0

Pull-up network conducts
Pull-down network broken
Output node at VDD

A=1,B=0

Pull-up network broken
Pull-down network conducts
Output node at GND

4-20

Steering Logic
CMOS Transmission Gate

nMOS transistors good at passing 0's but bad at passing 1's
produce weak 1

pMOS transistors good at passing 1's but bad at passing 0's
produce weak 0

perfect "transmission" gate places these in parallel:

:: P«

Transmission or
"Butterfly" Gate

Switches Transistors

421

Steering Logic

Selection Function/Demultiplexer Function with Transmission Gates

Selector: s
Choose 10ifS=0
Choose 11ifS=1

Demultiplexer:
ItoZz0ifS=0
ltozlifS=1

4-22

Steering Logic
Use of Multiplexer/Demultiplexer in Digital Systems

/ \
— i
— i
/ \

So far, we've only seen point-to-point connections among gates

Mux/Demux used to implement multiple source/multiple destination
interconnect

4-23

Steering Logic

Well-formed Switching Networks

Problem with the Demux implementation:
multiple outputs, but only one connected to the input!

The fix: additional logic to drive every output to a known value

Never allow outputs to "float"

4-24

Steering Logic

Complex Steering Logic Example
N Input Tally Circuit: count # of 1's in the inputs

Conventional Logic
for 1 Input Tally
Function

Switch Logic Implementation
of Tally Function

Steering Logic

Complex Steering Logic Example
Operation of the 1 Input Tally Circuit

— p—
.
-

Y

X
X

Input is 0, straight through switches enabled

425 426
Steering Logic Steering Logic
Complex Steering Logic Example Complex Steering Logic Example
Operation of 1 input Tally Circuit Extension to the 2-input case
) >
_]
—_—
»
_|
Conventional logic implementation
Input = 1, diagonal switches enabled
4-28

4-27

Steering Logic

Complex Steering Logic Example

Switch Logic Implementation: 2-input Tally Circuit

R

Cascade the 1-input implementation!

4-29

Steering Logic
Complex Steering Logic Example
Operation of 2-input implementation

Y)
\ - =!» \ Lt =:
- - - Ll Lot g
-t - - _—— - =
L | _=/ -
Y Y
\J - g \J = -
- >u/’///—_.:» - - -
|2 |2 /_t - -
- / /
4-30

Multiplexers/Selectors

Use of Multiplexers/Selectors

Multi-point connections

DEMUX

Multiple input sources

Multiple output destinations

4-31

Multiplexers/Selectors

General Concept
n . .
2 datainputs, n control inputs, 1 output
n_ . . .
used to connect 2 points to a single point

control signal pattern form binary index of input connected to output

Z=A'lg+ Al I

Functional forr/

Logical form

Two alternative forms
for a 2:1 Mux Truth Table

4-32

Multiplexers/Selectors

Z=A'lg+ Al

Z=A'B'I0O+A'BI1+AB'I2+ABI3

Z=A'B'C'I0O+A'B'CI1+A'BC'I2+A'BCI3+
AB'C'I4+AB'CI5+ABC'I6+ABCI7

2N
k=0 k
in minterm shorthand form for a 2™:1 Mux

In general, Z=% m kl

4-33

Multiplexers/Selectors
Alternative Implementations

]
" 1
12 —)‘,_ :

A

B

)
| | |

>

Gate Level Transmission Gate
Implementation Implementation of
of 4:1 Mux 4:1 Mux

thirty six transistors twenty transistors

4-34

Multiplexer/Selector
Large multiplexers can be implemented by cascaded smaller ones

Control signals B and C simultaneously
choose one of 10-13 and 14-17

O] Control signal A chooses which of the
TR upper or lower MUX's output to gate to Z
S
0
1ls
0
1g v
1
Alternative 8:1 Mux Implementation 5
0
3 50 s1
ls
0
1ls

4-35

Multiplexer/Selector

Multiplexers/selectors as a general purpose logic block

2n'1:1 multiplexer can implement any function of n variables

n-1 control variables; remaining variable is a data input to the mux

Example:
F(A,B,C) =m0 +m2+ m6 +m7
=A'B'C + A°BC + ABC' + ABC
=A'B'(C) + A'B(C) + AB'(0) + AB (1)

"Lookup Table"

4-36

Multiplexer/Selector
Generalization

I 1

Four possible
n-1 Mux configurations
control variables of the truth table rows
single Mux
data variable Can be expressed as
a function of In, 0, 1
Example:
G(A,B,C,D) can be implemented by an 8:1 MUX:
AB n—Au
K-map
cpN_ 00 01 11 10 — ool AB.C
ool [11Tol 2] |1 as control variables
01| [1]|(0]||O] ||O
— = — | — Multiplexer —
11 |1/|[1][||O 1 Implementation
C —
TTL package efficient
10 O L] 19 May be gate inefficientl
B 4-37

Multiplexer/Selector

« TTL quad 2:1 multiplexers with enable

Enibile Salect | Tnpu

a ¥ e 1 =l T X ¥

A 11 |] a o 1

L1 _ i o o 1} 1

ol L, IV gt gy pd o i X
ric | - 1 ¥

o T % | {3 |

= 58 : 12 38 Ll

1d 14) 4 4 .

11

[=F F F L L

4-38

Decoders/Demultiplexers
Decoder: single data input, n control inputs, 2" outputs

control inputs (called select S) represent Binary index of output to which
the input is connected

data input usually called "enable" (G)

1:2 Decoder:
00=G+S; O1=G+S

3.8 Decoder.
O0=G+S0+S1+S2
01=G+S0+S1+S2

2:4 Decoder:

00=G+S0eS1 02=G+S0+S1+52

01=G+S0-S1 03=G+S0+S1+S2

02=G+S0-S1 O4=G+S0+S1+S2

O5=G+S0+S1+S2

03=G+S0-S1
0O6=G+S0+S1+S2
O7=G+S0+S1+S2

4-39

Decoders/Demultiplexers

Alternative Implementations

G

Select:

>

Output 1

W

output oSe“’j;E) output 0
|> } Output 1

1:2 Decoder, Active High Enable

1:2 Decoder, Active Low Enable

|
|)—:. Output 0

‘1:)—: Output 1

—d
—)—:. Output 2

—d >—.:. Output 3

1G
k=:i_)—:- Output 0
|
—)—:- Output 1
j_)—:. Output 2
|)_:. Output 3
1 p
Select0 Selectl jelecto jelectl

2:4 Decoder, Active High Enable

2:4 Decoder, Active Low Enable

4-40

Decoders/Demultiplexers
Switch Logic Implementations

Naive, Incorrect Implementation

All outputs not driven at all times .

Correct 1:2 Decoder Implementation

4-41

Decoders/Demultiplexers

Switch Implementation of 2:4 Decoder

=IV=== P’l.!
I Operation of 2:4 Decoder
S0=0, S1=0
i- one straight thru path

B — three diagonal paths
S
OO 0 55
BTN T Lt

4-42

Decoder/Demultiplexer
Decoder as a Logic Building Block

Decoder Generates Appropriate
Minterm based on Control Signals

Example Function:
FI1=A'BC'D + AAB'CD + ABCD

F2=ABCD + ABC
F3=(A'+B'+C' +D)

4-43

Decoder/Demultiplexer
Decoder as a Logic Building Block

If active low enable, then use NAND gates!

4-44

Decoder/Demultiplexer

« TTL decoder components

5]

[m]
g
(4]
-
=
|&]
=

ErrrrEEL

_4
=
rEErrEHs

Frr
EEEF™eE
F T la. |
ol o ol ol ol o = Y

===
==

[l

b

e

A
-
X
L
H
L
H
L

b ofs =i o o g o o

S=ErzzzT
cEzTo

EEEE

-
[

TEIX

EE@EEE
-

mmEEe

EEECE

ErrEzrz=Emms

mrmmTITTEEmE
FREEETETEEEY

4-45

Multiplexers/Decoders
Alternative Implementations of 32:1 Mux

Multiplexer Only Multiplexer + Decoder

4-46

Multiplexers/Decoders
5:32 Decoder

4-47

Tri-State and Open-Collector
The Third State

Logic States: "0","1"
Don't Care/Don't Know State: "X" (must be some value in real circuit!)

Third State: "Z" — high impedance — infinite resistance, no connection

Tri-state gates: output values are "0", "1", and "Z"
additional input: output enable (OE)

When OE is high, this gate is a non-inverting "buffer"

When OE is low, it is as though the gate was
disconnected from the output!

R O X
o

POy

—ON

This allows more than one gate to be connected to the
same output wire, as long as only one has its
output enabled at the same time

Non-inverting buffer's |
timing waveform |

nzn nzn
4-48

Tri-state and Open Collector
Using tri-state gates to implement an economical multiplexer:

>

When Selectinput is asserted high
Inputlis connected to F

> When Selectinput is driven low
InputO is connected to F

This is essentially a 2:1 Mux

4-49

Tri-state and Open Collector
Alternative Tri-state Fragment

’, ,> Active low tri-state enables
® plus inverting tri-state buffers

>

A ‘
>-

Switch Level Implementation
of tri-state gate

4-50

Tri-State and Open Collector
4:1 Multiplexer, Revisited

Decoder + 4 tri-state Gates

4-51

Tri-State and Open Collector

Open Collector
another way to connect multiple gates to the same output wire

gate only has the ability to pull its output low; it cannot actively
drive the wire high

this is done by pulling the wire up to a logic 1 voltage through a
resistor

+5V

OC NAND gates
Wired AND:

o f If A and B are "1", output is actively pulled low
if Cand D are "1", output is actively pulled low

if one gate is low, the other high, then low
if both gates are "1", the output floats, pul
high by resistor

v together!

wins
led

Hence, the two NAND functions are AND'd

m oo m o

Tri-State and Open Collector

4:1 Multiplexer

\EN—Lo

513
S04

G Y3
139 Y2|ob
B Yijo2
A YOlod—
\I3
w2

L0
Il ——9

P —

OR

OR

OR

OR

+5V

Decoder + 4 Open Collector Gates

Tri-State and Open Collector

¢ TTL tri-state buffers

Ladic 240

A 12
T A4 1va B3
— A3 1va P
n L
= |1A2 172 :'|_.q
1Al ivi B
'f_g_ﬂq. 2Y4 :;.L
12 243 2v3 pl
lzaz 2vz pl
11 laa1 zy1 Bl
Qi

[

E'.l:

il

1A1

244
2A3
252
2451

[T

=
|— |: |:| |'\-|

Ed
Ga

1¥1

2r4
2Y3
2y2
2Y1

4-53 4-54
Read-Only Memories Read-Only Memories
ROM: Two dimensional array of 1's and 0's Example: Combination Logic Implementation
Row is called a "word"; index is called an "address"
FO=A'B'C + AB'C' + AB'C
Width of row is called bit-width or wordsize
F1=A'B'C + AABC' + ABC
Address is input, selected word is output
F2=A'B'C' + A'B'C + AB'C'
+5V +5V +5V +5V
L e F3=A'BC + AB'C' +ABC
— 53 |
2 -1 L 11
Dec i [n"__: ["J-: Word Line 0011 -
i il Word Line 1010 b
' [y
0
LT o= i
0 n-1
Address
Internal Organization
4-55 4-56

Read-Only Memories

Not unlike a PLA
structure with a
fully decoded
AND array!

ROM vs. PLA:

ROM approach advantageous when
(1) design time is short (no need to minimize output functions)
(2) most input combinations are needed (e.g., code converters)
(3) little sharing of product terms among output functions

ROM problem: size doubles for each additional input, can't use don't cares
PLA approach advantangeous when

(1) design tool like espresso is available

(2) there are relatively few unique minterm combinations

(3) many minterms are shared among the output functions
PAL problem: constrained fan-ins on OR planes

4-57

Read-Only Memories

2764 EPROM
8K x 8

16K x 16
Subsystem

4-58

Combinational Logic Word Problems

General Design Procedure

1. Understand the Problem
what is the circuit supposed to do?
write down inputs (data, control) and outputs
draw block diagram or other picture

2. Formulate the Problem in terms of a truth table or other suitable
design representation
truth table or waveform diagram

3. Choose Implementation Target
ROM, PAL, PLA, Mux, Decoder + OR, Discrete Gates

4. Follow Implementation Procedure
K-maps, espresso, misll

4-59

Combinational Logic Word Problems
Process Line Control Problem

Statement of the Problem

Rods of varying length (+/-10%) travel on conveyor belt
Mechanical arm pushes rods within spec (+/-5%) to one side
Second arm pushes rods too long to other side

Rods too short stay on belt

3 light barriers (light source + photocell) as sensors

Design combinational logic to activate the arms
Understanding the Problem

Inputs are three sensors, outputs are two arm control signals

Assume sensor reads "1" when tripped, "0" otherwise

Call sensors A, B, C

Draw a picture!

4-60

Combinational Logic Word Problems
Process Control Problem

Where to place the light sensors A, B, and C to distinguish among
the three cases?

Assume that A detects the leading edge of the rod on the conveyor

4-61

Combinational Logic Word Problems
Process Control Problem

A to B distance place apart at specification - 5%

A to C distance placed apart at specification +5%

4-62

Combinational Logic Word Problems
Process Control Problem

Truth table and logic implementation
now straightforward

"too long"=ABC
(all three sensors tripped)

"in spec" = ABC'
(first two sensors tripped)

4-63

Combinational Logic Word Problems

BCD to 7 Segment Display Controller

Understanding the problem:
input is a 4 bit bcd digit

output is the control signals for the display
4inputs A,B,C,D
7 outputs CO ~ C6

[/ 17/
[/ /
ANV AYE

1/ 7 [
/

Block Diagram
4-64

Combinational Logic Word Problems

BCD to 7 Segment Display Controller

& B ¢ D GO0 G2 €3 04 C5) Ch
o0 00 [
(I L | !
I 0 | A 1 AR B /0
oo 1 | A R | O [
o1t 0 0 [N
I L | A | R B
o1 0 | A A AR B O
o1 1 T 1t 1t 0 0 00
1 0o L A A S B B
1 [L S A | R B
1 [0 O A G S S
1 [1 O S S R S
1 0 L A S A A
1 0 1 LA S S A S
1 11 0 O A G S S
1 1 1 LA S S S S

Formulate the problem in terms of a
truth table

Choose implementation
target:

if ROM, we are done

don't cares imply PAL/PLA may be
attractive

Follow implementation procedure:
hand reduced K-maps
VS.

espresso

L

Combinational Logic Word Problems

BCD to 7 Segment Display Controller

|
|

B T T
| e
o oL I

CO=A+BD+C+B'D'
Cl1=A+C'D'+CD+B'
C2=A+B+C'+D

14 Unique Product Terms

C3=B'D'+CD'+BC'D+B'C
C4=B'D'+CD

C5=A+C'D'+BD'+BC
C6=A+CD'+BC'+B'C

465 4-66
Combinational Logic Word Problems Combinational Logic Word Problems
BCDto 7 Segment = BCD to 7 Segment
Display Controller ’ Display Controller
| § > «
E B » «
i
H BN
- B « =]
16H8PAL i 14H8PAL - -
Can Implement £ Cannot Implement . > -
the function ’ . the function B
5"4' > B >
= -
= > « B
A 5] »
= - -
H R B
: B >
= > < - -
- -
T s
i g
= « B »
s >]
- § > = « = » «
Eb’j > > «
> B2 . «
467 4-68

Combinational Logic Word Problems
BCD to 7 Segment

Display Controller

F100 PAL programming map

4-69

Combinational Logic Word Problems

BCD to7 Segment Display Controller

Co=BC'D+CD+B'D'+BCD'+A
Cl=B'D+C'D'+CD+B'D'
C2=B'D+BC'D+C'D'+CD+BCD
C3=BC'D+B'D+B'D'+BCD'

i4 i4
07 07

dilbabcd dilbabcd
.obcOclc2c3cd4c5¢c6 .obcOclc2c3c4c5c6

.p 16 p9

0000 1111110 -10- 0000001

0001 0110000 -01- 0001001

0010 1101101 -0-1 0110000

0011 1111001 -101 1011010

0100 0110011 --00 0110010

0101 1011011 -613 ﬂ(l)(l)(l)gg

0110 1011111 0 100000 Ci-B'D' +BCD

0111 1110000
1000 1111111
1001 1110011

espresso
input

-110 1011111
.e

espresso
output

C5=BC'D+C'D'+A+BCD
C6=B'C+BC'+BCD' +A

9 Unique Product Terms!

63 Literals, 20 Gates

4-70

Combinational Logic Word Problems

BCD to 7 Segment Display Controller

PLA Implementation

A B C D

it

BT
BC
BD

BTD

)
AN 1

VUVY

1
co 1 c2 c3 Ccs

s
Y

4-71

Combinational Logic Word Problems

BCD to7 Segment Display Controller
Multilevel Implementation

X=C'+D
Y=B'C
CO=C3+A'BX'+ADY
Cl=Y+A'C5'+C' D' C6
C2=C5+A'B'D+A'CD
C3=C4+BDC5+A'B'X
C4=D'Y+A'CD
C5=C'C4+AY+A'BX
C6=AC4+CC5+C4'C5+A'B'C

52 literals
33 gates

Ineffective use of don't cares

4-72

Combinational Logic Word Problems
Logical Function Unit

3 control inputs: CO, C1, C2

Statement of the Problem: 2 datainputs: A, B

1 output: F

co 1 CcZ F Comments

1] 1] 1] 1 ahlvays 1

1] 1] 1 A+B logicalor

0 1 0 A logical nand

1] 1 1 AxorB logicalxor

1 1] 0 AxnowB logicalxnor

1 0 1 A=B logicaland

1 1 0 A+E logical nor

1 1 1 0 ahlvays 0

4-73

=]
=

Combinational Logic Word Problems

Logical Function Unit
4 g2 A B

] 0 Formulate as a truth table

Choose implementation technology
5-variable K-map
espresso

multiplexor implementation

}’::- » 4 TTL packages:

Sy 4 x 2-input NAND
}. 4 x 2-input NOR

= } 2 x 2-input XOR

.‘. 8:1 MUX
Ty

RPN | R S Y e T

R - = e e B e e T e

——mogoa—co g~~~ ocohbhaocohbh ool ool ool —-oco
I I e e Y

0
0
]
0
0
0
]
1
1
1
1
1
1
1
1
0
0
0
]
0
0
0
0
T
1
1
1
1
1
1
1

R - [e - - 1| ey sy

4-74

Combinational Logic Word Problems
Logical Function Unit

Follow implementation procedure

5 gates, 5 inverters

Also four packages:
4 x 3-input NAND
1 x 4-input NAND

r_/ Alternative: 32 x 1-bit ROM

single package

4-75

Combinational Logic Word Problems
8-Input Barrel Shifter

Specification:

Inputs: D7, D6, ~ DO
Outputs: O7, 06, ~ O0
Control: S2, S1, SO

shift input the specified number
of positions to the right

Understand the problem:

D7 o7 D7 \: o7 D7 : :O7
D6 06 D6 06 D6 \ 06
D5 05 D5 . 05 D5 05
D4 ’ 04 D4 . 0O4 D4 . o4
D3 ' 03 D3 . 03 D3 | 03
D2 ' 02 D2 02 D2 02
D1 o1 D1 o1 D1 o1
DO 00 DOQ 00 DO 00

S2,51,S0=000 $2,51,S0=001

S$2,S1,S0=010

4-76

Combinational Logic Word Problems

8-Input Barrel Shifter

Function Table

Boole_an 07 =S2'S1' S0' D7

equations
06 = S2' S1' SO' D6
05 =S52'S1' SO' D5
04 =S52'S1'SO' D4
03=S52'S1'S0' D3
02 =S52'S1'S0' D2
01=S2'S1'S0' D1
00 =S2'S1' SO' DO

S2' S1' SO D6
S2' S1' S0 D5
S2' S1' SO D4
S2' S1' S0 D3
S2' S1' S0 D2
S2'S1'S0 D1
S2' S1' SO0 DO
S2' S1' S0 b7

..+S2S1S0D0
..+S82S1S0D7
..+S2 S1 S0 D6
.. +S2 S1 S0 D5
..+S2S1S0D4
.. +S52S1S0D3
..+S2 S1S0D2
..+S82S1S0D1

4-77

Combinational Logic Word Problems

8-Input Barrel Shifter

Straightforward gate logic implementation OR
8 by 8:1 multiplexer (wiring mess!) OR

Switch logic

<O

Crosspoint switches Fully Wired crosspoint switch

4-78

Chapter Review

* Non-Simple Gate Logic Building Blocks:

PALs/PLAs
Multiplexers/Selecters
Decoders

ROMs

Tri-state, Open Collector

» Combinational Word Problems:
Understand the Problem

Formulate in terms of a Truth Table

Choose implementation technology

Implement by following the design procedure

4-79

