

1-001-003

ODX AND **O**D

R

Contents

- Today's DFT Challenge
- Comparison Factors of TestKompress
- Comparing Techniques
 - ATPG
 - EDT
 - LBIST
- How TestKompress works
- Recommendations & Summary

Design Trends, Test Challenges

Smaller DSM devices

- New types of defects
- Requires at-speed testing
- Growing gate counts
 - Exploding test set sizes
 - Requires test set compression

Complex SoC architectures

- Diverse test methods
- Requires integrated test products

DFT Reduces Test Cost

- DFT reduces test set sizes
 - Reduces ATE memory requirements
 - Reduces test time
 - Minimizes or eliminates tester reloads
 - Improves tester throughput
- **DFT** offers high quality *and* reduced cost

PATTERN VOLUME

Quality -- The Reason You Test! Factors to Consider Compression Methods

Support for all fault models

- **Ease of obtaining high stuck-at coverage**
- **Support of IDDQ testing**
- Support of at-speed testing
- Extendable to future fault models
- Support for all pattern types
 - Sequential patterns
- Testing of *all* logic
- Diagnostics

Compression

Factors to Consider Compression Methods

- Compression results are what you're after
- Compression factors
 - Test time
 - Test data volume
 - Compatibility with existing ATE
 - Scalability of approach

Comparison Factors Summary

ATPG Comparison Factors

LBIST Comparison Factors

EDT Comparison Factors

EDT Compared to Standard ATPG

EDT Architecture

×400s

EDT Test Pattern Generation Process

- **1. Target faults**
- 2. Generate test cube: 1-5%

3. Compressed stimuli: ≈1-5%

4. Random fill: ≈ 99-95%

5. Compact response

Compression Factors: Encoding Capacity

How many care bits are in a test cube?

EDT Encoding Capacity How Scalable is it?

EDT decompressor is highly scalable with minimal overhead

EDT Response Compactor

Per pattern programmable scan selection

Unique Compaction Features Handling of X states

- Programmable scan selection eliminates impact of X states
- No X bounding logic required

Unique Compaction Features Zero Aliasing

- Programmable scan selection eliminates aliasing
- Fault coverage computed on compactor outputs

EDT Example

Test Cycles = $\frac{1600 * 11292}{2238 * (76 + 4)}$ = 100X

TestKompress[™] Defines the Standard for Low Cost Scan Test

- Improves manufacturing test floor throughput
 - Shortens scan test time
- Increases current ATE value
 - Eliminates memory upgrades
 - Extends ATE life
- Reduces capital expenditures
 - Fewer new ATE
 - Less expensive ATE
- Easily adopted and completely synergistic with FastScan

I estKompress: Already a Winning Product

ELECTRONIC PRODUCTS 26th Annual Product of the Year Awards

I estKompress Similar flow to ATPG

- Fits easily into all standard design flows
 - Vast majority of FastScan users and all current TestKompress users use Synopsys' synthesis
 - Very similar flow; simple
 migration from ATPG to EDT
- Reuses FastScan's proven
 - Libraries
 - Dofiles (+ TestKompress commands)
 - Output vector formats
 - Diagnostic capabilities

TestKompress in Production at Infineon

- Five designs taped out in 2002
 - Automotive, wireless communication, data communication
 - **1.3M 2.8M gates**
- Extensively validated versus ATPG (bypass)
 - **Effective compression**
 - Test effectiveness/quality
- Currently testing "extreme" compression ratios (>50X)
- Usage is expanding in 2003

Comparison Factors of EDT

Quality		Design			Compression	
equirement	EDT Rating	Requirement	EDT Rating		Requirement	EDT Rating
upport all ult models	High	Flow	Relatively easy		Test time	20X-100X+
xtends to ther faults	High	Ease of adoption	Easy for ATPG users		Test data volume	20X-100X+
upport at- peed test	High	Expertise level	Low		Pattern efficiency	High
upport all ttern types	High	Functional intrusion	Low		Compatible with ATE	Yes
Test all logic	High	Area overhead	4-5% (for scan) 0.2-3% for EDT		Scalability of approach	Highly Scalab
Diagnosis	Similar to ATPG	Performance Impact	Low			

EDT Summary

EDT is a natural extension to ATPG

- **Easy to learn and implement (similar flow to ATPG)**
- Obtains high quality tests with dramatic compression
- EDT supports
 - **Reduction of test data volume and time**
 - All fault models
 - All pattern types
 - X-handling without functional logic modification
- EDT is highly scalable
- TestKompress is a proven commercial EDT solution

All Methods Compared

Comparison Summary

	<u> </u>	45			
	ATPG	EDT	LBIST		
Test Quality	High, supports all fault models	Same as ATPG	High test quality hard to achieve without ATPG top-up or test points.		
Design Issues	Well understood easy-to-use flow. Low design intrusion.	Easily adopted by ATPG users. No functional logic intrusion.	Requires DFT expertise. Highly design intrusive.		
ompres- sion	Baseline. New techniques continue to improve results.	20X-100X+ of test time and data volume vs. best ATPG results.	Test time not reduced. Test data can be as low as 0 vectors.		

Recommendations

