
808 Youngkyu Park et al. © 2013 ETRI Journal, Volume 35, Number 5, October 2013

Programmable memory built-in self-test (PMBIST) is
an attractive approach for testing embedded memory.
However, the main difficulties of the previous works are
the large area overhead and low flexibility. To overcome
these problems, a new flexible PMBIST (FPMBIST)
architecture that can test both single-port memory and
dual-port memory using various test algorithms is
proposed. In the FPMBIST, a new instruction set is
developed to minimize the FPMBIST area overhead and
to maximize the flexibility. In addition, FPMBIST includes
a diagnostic scheme that can improve the yield by
supporting three types of diagnostic methods for repair
and diagnosis. The experiment results show that the
proposed FPMBIST has small area overhead despite the
fact that it supports various test algorithms, thus having
high flexibility.

Keywords: Built-in self-test, BIST, programmable
memory BIST, PMBIST, flexible PMBIST, single-port
memory, dual-port memory.

Manuscript received Oct. 20, 2012; revised Mar. 6, 2013; accepted Mar. 21, 2013.
This research was supported by the MSIP (Ministry of Science, ICT & Future Planning),

Korea, under the CITRC (Convergence Information Technology Research Center) support
program (NIPA-2013-H0401-13-1005) supervised by the NIPA (National IT Industry
Promotion Agency).

Youngkyu Park (phone: +82 2 2123 2775, yk76.park@samsung.com), Inhyuk Choi
(ihchoi@soc.yonsei.ac.kr), and Sungho Kang (corresponding author, shkang@yonsei.ac.kr)
are with the Department of Electrical & Electronic Engineering, Yonsei University, Seoul, Rep.
of Korea.

Hong-Sik Kim (hongsik1.kim@sk.com) is with the Advanced Design Group, R&D, SK
Hynix Inc., Icheon, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.13.0112.0717

I. Introduction

Advances in semiconductor technology and reuse design
methodologies have enabled many intellectual property cores,
such as processor cores, large capacity embedded memory, and
mixed signal analog cores, to be integrated on a single chip.
Such integration is referred to as the system on chip (SoC)
design methodology. In current SoC products, embedded
memory cores occupy most of the chip area and thus have
become a key factor in the reliability of SoC devices. In
addition, the limited bandwidth of external automated test
equipment (ATE) makes the testing of embedded memory
cores more difficult. Therefore, embedded memory core testing
in the SoC design environment has become a very important
and time-consuming task [1]-[3].

Single-port memory and dual-port memory are widely used
as embedded memory in SoC products. In single-port memory,
the data transactions are conducted through a single IO port,
whereas in dual-port memory, two different data transactions
can be simultaneously performed through two independent IO
ports. As such, the fault models and test algorithms of single-
port memory are different from those of dual-port memory.
However, most of the research in the field of embedded
memory testing has been devoted to single-port memory [4]-
[6].

The memory built-in self-test (BIST) technique is widely
regarded as an optimal embedded memory test in the SoC
design environment since it can enable an at-speed test with
reduced IO channel test bandwidth [7], [8]. However,
previously developed memory BIST methods only support a

A Flexible Programmable Memory BIST
for Embedded Single-Port Memory

and Dual-Port Memory

Youngkyu Park, Hong-Sik Kim, Inhyuk Choi, and Sungho Kang

ETRI Journal, Volume 35, Number 5, October 2013 Youngkyu Park et al. 809

limited test based on the March algorithm and the restrictive
non-March algorithm, and, as a result, the flexibility and fault
coverage are restricted. Programmable memory BIST
(PMBIST) methodologies have been proposed to enhance the
flexibility of conventional memory BIST techniques and to test
diverse fault models [9]-[11]. Flexibility in PMBIST is defined
as how various test algorithms can be supported and is one of
the main concerns for PMBIST. PMBIST techniques can
improve the flexibility of conventional memory BIST
techniques to accommodate various test algorithms. However,
these techniques increase the area overhead significantly.

The majority of research in the field of embedded memory
testing has focused on single-port memory. However, research
regarding PMBIST architecture for dual-port memory is also
important. PMBIST has tradeoffs between its fault coverage
and area overhead. This is because supporting various test
algorithms requires a large area overhead, and, if the number of
supported test algorithms is limited, the area overhead shrinks
but the fault coverage also decreases. Thus, a PMBIST
architecture for both single-port memory and dual-port
memory is needed. The PMBIST should be able to support
various test algorithms with a small area overhead. To improve
the memory yield, a diagnostic test is also needed. The
diagnostic data is generated by the BIST circuit.

In this work, a new microcode-based PMBIST architecture
is proposed to test both single-port memory and dual-port
memory. The proposed flexible PMBIST (FPMBIST) supports
March-based algorithms, non-March algorithms, and dual-port
memory test algorithms. That is, all fault models for single-port
memory and dual-port memory can be addressed with a single
BIST architecture. Such a scheme allows for the grouping of
single-port memory and dual-port memory into the same BIST
domain so that the total BIST area can be reduced and so that
simple test scheduling is possible. An optimized instruction set
is also proposed in this study to reduce the area overhead of the
programmable BIST circuitry. Furthermore, the FPMBIST
design supports three types of diagnostic methods. With this
diagnostic scheme, the FPMBIST design can increase the
memory yield.

II. Previous Works on PMBIST Architecture

Generally, PMBIST can be classified into one of two types:
finite state machine (FSM)-based and microcode-based. FSM-
based PMBIST allows the ATE to choose a test algorithm from
several predetermined FSM components of test algorithms.
This method usually has low test complexity and small area
overhead but has relatively low flexibility and fault coverage.
On the other hand, the microcode-based PMBIST is the most
widely used approach. The microcode-based PMBIST saves

the test algorithm in the form of instructions in internal storage
and implements the test algorithm using the saved instructions.
This method of PMBIST has high flexibility and fault coverage,
but the area overhead increases significantly.

A variety of architectures have been proposed for PMBIST
design. The architecture in [12] can support five groups of test
algorithms: March, Galloping/Walking, the test for the address
decoder open, butterfly, and sliding diagonal. The base loop
and local loop are also used to support non-March algorithms,
but only a two-level loop is supported. As a result, the
programming flexibility is restricted. The scheme in [13]
upgrades the programmable BIST architecture of [12] by
changing the instruction set to support multi-loop performance,
and the architecture also supports a diagnostics scheme.
However, the area overhead is significantly increased.

The nonlinear PMBIST (NPMBIST) architecture in [14]
was proposed to effectively test single-port memory and
supports both March and non-March algorithms. The
NPMBIST uses an optimized instruction set to minimize the
area overhead and supports multi-loop performance to ensure
the effective implementation of complicated test algorithms.
However, NPMBIST does not allow algorithm downloading
from external ATE and cannot support such non-March
algorithms as data retention tests, butterfly, and so on.
NPMBIST can only generate limited complicated addresses
using the fast diagonal method.

The architecture in [15] is a microcode-based programmable
BIST scheme for dual-port memory testing. The test program
set consists of 4-bit test primitives with which the
microprogram for the target test algorithm is coded. The
microprogram is stored in the μprogram memory. The ROM or
an In-System Programmable module is used for the μprogram
memory. This scheme can partially support multi-loop
performance. The scheme of [15] can only access the same cell
through two different ports. As such, only one port fault can be
tested.

The architecture in [16] is a BIST scheme for dual-port
memory using the same interface as the standard 1149.1 test
access port. This scheme tests the dual-port memory by
generating test patterns with transformed test algorithms from a
March-based test algorithm, such as March C– or March A. In
this case, only the March-based test algorithm can be
materialized without multi-loop support, so the programming
flexibility is limited. Furthermore, it cannot detect 2PF2av
faults [17] because it cannot write and read simultaneously at
two different cells through two ports.

III. FPMBIST

In previous FSM-based MBIST schemes, fixed test patterns

810 Youngkyu Park et al. ETRI Journal, Volume 35, Number 5, October 2013

based on test algorithms (such as the March algorithm) were
supported such that the fault coverage and flexibility were
restricted, even with a smaller hardware area. In addition,
different BIST circuitries were required for single-port memory
and dual-port memory. Consequently, the total memory BIST
circuit area was increased.

In this work, a new microcode-based FPMBIST architecture
is proposed that supports various test algorithms and memory
port types. The target test algorithm for the FPMBIST is
programmed with microcodes based on the proposed
instruction set and is stored in the internal memory. By
decoding the microcode sequence, test patterns based on the
target test algorithm are generated using the BIST logic. The
FPMBIST can test both single-port memory and dual-port
memory, so memory of the same IO-type can be grouped
together into the same test domain. The total BIST area
overhead can thus be reduced compared to conventional BIST
schemes, and the embedded memory cores can be scheduled in
a more flexible manner.

Figure 1 shows the operating sequence of the FPMBIST for
single-port memory and dual-port memory. Initially, the
FPMBIST is in the Start state. In the Load_CMD state, the
commands are loaded from the outside by the Command Load
(CMDL) signals. In the Shift_CMD state, the commands are
shifted to the decoder by the MTestH signals. The FPMBIST
has two instruction sets to implement the algorithms. Therefore,
the CMD decoder consists of two types of decoding logic. If
Test Algorithm Select (TAS)=0, the FPMBIST will be in the
Decode_LIS state, and the CMD decoder will decode
commands with the decoding logic for the linear instruction set.
If TAS=1, the FPMBIST will be in the Decode_NLIS state,
and the CMD decoder will decode commands with the
decoding logic for the nonlinear instruction set. In the
Pattern_Generation state, the test patterns are generated by
controlling the test pattern generator (TPG) by using signals
received from the CMD decoder. In the Target_Memory_Test
state, the target memory is determined by the Test Memory
Select (TMS) signals, and is then tested. In the Diagnostic state,
the fault information detected by the memory test is transmitted
to the external ATE. This state is operated in two modes by the
Diagnostic data Mode Select (DMS) signals. The purpose of
the Bypass mode is to support the faulty information. The
purpose of the Fault Information for Repair (FIR) mode is to
support the fault syndrome and addresses of faulty cells for the
redundancy analysis, and the purpose of the Fault Information
for Diagnosis (FID) mode is to support the diagnostic data for a
fault analysis consisting of the fault syndrome, the addresses of
faulty cells, and the pattern that detected the fault.

In previous dual-port memory BISTs, the testing was
performed on the dual-port memory by applying the test

Fig. 1. Operating sequence of FPMBIST.

Yes
Linear instruction set

No
Nonlinear instruction set

Start

Decode_LIS Decode_NLIS

Pattern_Generation

Diagnostic

Load_CMD

Shift_CMD

TAS==0 ?

Target_Memory_Test

BIST_End

TMS = 0: Single-port memory test
TMS = 1: Dual-port memory test

DMS = 00: Bypass mode
DMS = 01: FIR mode
DMS = 10: FID mode

stimuli through one port and receiving the test responses
through the other port. In addition, one cell could be
simultaneously read and written through different ports.
However, several fault models, such as 2PFav, cannot be tested
using these schemes. The proposed FPMBIST supports
conventional BIST operational modes and can simultaneously
access two different cells through two different ports.

An instruction set is developed for the FPMBIST. A non-
March algorithm, such as the Galloping and sliding diagonal
algorithms, and a March-based algorithm can easily be
microcoded by the instruction sets. The instructions support
most of the memory test algorithms with little hardware
complexity and allow the microcode size to be optimized. In
addition, the FPMBIST supports a data retention test and
improves memory yield with the diagnostic scheme.

1. Instruction Set Architecture

In the proposed FPMBIST, the target test algorithm is
programmed into microcode by the instruction set, which is
stored in the internal memory. The microcode sequence is
decoded into the original test stimuli during the BIST test cycle.
The proposed instruction set is divided into a linear instruction
set and a nonlinear instruction set according to the target fault
model. The nonlinear instruction set is used in the non-March-
based test of one-port related fault models, and the linear
instruction set is employed in the March-based test of one-port

ETRI Journal, Volume 35, Number 5, October 2013 Youngkyu Park et al. 811

Table 1. Nonlinear instruction set.

Instruction set Inst[13:12] Inst[11] Inst[10] Inst[9] Inst[8] Inst[7] Inst[6] Inst[5] Inst[4:2] Inst[1:0]

Function Instruction
Control

Background
True/Inversion

Memory
Operation

Port
Select

Column
Output

Row
Output

Column
Counter

Row
Counter Counter Control Operation

Control
00 Increment 0 True 0 Read 0 A 0 CX 0 RX 0 CX 0 RX 000 NOP 00 NOP

01 Branch 1 Inversion 1 Write 1 B 1 CY 1 RY 1 CY 1 RY 001 CNOP 01 Y←X

10 RDBranch 010 ^Row 10 X←Y

11 Pause 011 ^Column 11 Terminate

Opcode

 100 D

and two-port fault models. The nonlinear instruction set can
also support a simple dual-port memory test. The sizes of the
linear and nonlinear instruction sets in this study are 9 bits and
14 bits, respectively. In addition, multi-loop performance is
supported by the nonlinear instruction set to more easily
implement the non-March algorithm. The architectural features
of the nonlinear instruction set are shown in Table 1.

An Instruction Control field (Inst[13:12]) signifies the
operational status so that the target test algorithm can be
implemented. The Increment state allows the next instruction
to be run, and the Branch state allows the program counter to
jump to the destination instruction. The branch operation is
performed through a branch register that also supports multi-
loop performance. The Return Data inversion Branch
(RDBranch) state is the command to rerun the test program
through the inversion of the background data, and the Pause
state is the command to hold the instruction during a set time to
detect a retention fault. The Background True/Inversion field
(Inst[11]) determines the background data type. If this bit is 0,
the background data fields are filled with “0”; otherwise, they
are filled with “1.” The Memory Operation field (Inst[10])
defines the memory access type. If this field is “0,” the read
operation is performed; otherwise, the write operation is
performed. The Port Select field (Inst[9]) selects the memory
port to be accessed. This bit allows the non-March algorithm
that is implemented by the nonlinear instruction set to be
applied to the dual-port memory test. The Column Output field
(Inst[8]) selects the memory test column address between
column counter X and column counter Y. The Row Output
field (Inst[7]) selects the memory test row address between row
counter X and row counter Y. The Column Counter field
(Inst[6]) activates the column address counter (incremented/
decremented) between column counter X and column counter
Y for the generation of the memory test column address. The
Row Counter field (Inst[5]) activates the row address counter
for the generation of the memory test row address. The column
address and the row address generate one address. The Inst[8],

Fig. 2. Test patterns of Galloping algorithm.

W0

W0
W0

W0
W0

W0
W0

W0
W0

W0
W0

W0
W0

W1
R0

R1
R0

R0

R1

R0
R0

R1

R0
R0

R1

R0

W0
W1

R0
R1
R0 R0

R1
R0

R0

R1

R0
R0 R0

R1
R0

R1
R0

W0
W1

R0

R1

R0
W0

R0

~

Pattern

W0
R1

R0
R1

R1

R0

R1
R1

R0

R1
R1

R0

R1

W1 W0
R1

R0
R1 R1

R0
R1

R1

R0

R1
R1 R1

R0
R1

R0
R1

W1
W0

R1

R0

R1
W1

R1

~

Pattern

A
dd

re
ss

W1

W1
W1

W1
W1

W1
W1

W1
W1

W1
W1

W1
W1

A
dd

re
ss

Fig. 3. Materialization of Galloping algorithm using a nonlinear
instruction set.

0000
0010
0001
0000

Branch 1
Branch
address

1
2
3
4

Branch 2
Branch 3

RDBranch 4

#

Branch
register0 1 0 1

0 0 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 1

0
1

1
0

1
1 0 1 0 1

In
st

ru
ct

io
n

#

Pa
us

e

Br
an

ch
R

D
B

ra
nc

h

Ba
ck

gr
ou

nd
 T

ru
e

Ba
ck

gr
ou

nd
 In

ve
rs

io
n

M
em

or
y

O
pe

ra
tio

n
(r

ea
d)

M
em

or
y

O
pe

ra
tio

n
(w

rit
e)

0
0
0
0
0
0
0

0 1

Po
rt

Se
le

ct
 (A

 p
or

t)
Po

rt
Se

le
ct

 (B
 p

or
t)

0 0 0 0 1 0
0 0 0 0 1 0
1 1 0 0 0 1
0 0 0 0 0 1
1 1 1 0 1 1
0 0 0 0 1 0
0 0 0 0 0 0

0 1 0 1 0 1
0
1
0

0
1
1

1
0
0

Co
lu

m
n

O
ut

pu
t (

C
X

)
Co

lu
m

n
O

ut
pu

t (
C

Y
)

Ro
w

 O
ut

pu
t (

R
X

)
Ro

w
 O

ut
pu

t (
R

Y
)

Co
lu

m
n

C
ou

nt
er

 (C
X

)
Co

lu
m

n
C

ou
nt

er
 (C

Y
)

Co
un

te
r C

on
tro

l (
^R

ow
)

Co
un

te
r C

on
tro

l (
^C

ol
um

n)
Co

un
te

r C
on

tro
l (

D
)

0 0
0 1
0 0
0 0
0 0
0 0
1 1

0
0

0
1

1
0

1
1

In
st

ru
ct

io
n

C
on

tro
l (

N
O

P)
In

st
ru

ct
io

n
C

on
tro

l (
Y

<-
X

)
In

st
ru

ct
io

n
C

on
tro

l (
X

<-
Y

)
In

st
ru

ct
io

n
C

on
tro

l (
te

rm
in

at
e)

0
0
0
0
1
0
0

0 1

R
ow

 C
ou

nt
er

 (R
X

)
R

ow
 C

ou
nt

er
 (R

Y
)

0
0
0

0
0
1

C
ou

nt
er

 C
on

tro
l (

N
O

P)
C

ou
nt

er
 C

on
tro

l (
C

N
O

P)

0
0

In
cr

em
en

t

0000
0001
0010
0011
0100
0101
0110

Inst[7], Inst[6], and Inst[5] sets are used for multi-loop
performance so that a complex address sequence can be
generated for the non-March algorithms. The Counter Control
field (Inst[4:2]) designates the counter option. The NOP state
means no operation. The CNOP state is an option for Inst[5]
and Inst[4] to maintain the current value without counting the

812 Youngkyu Park et al. ETRI Journal, Volume 35, Number 5, October 2013

Table 2. Linear instruction set.

Instruction set Inst[8:7] Inst[6] Inst[5] Inst[4] Inst[3] Inst[2] Inst[1:0]

Function Instruction
Control

Address
Up/Down

A Port Background
True/Inversion

A Port Memory
Operation

B Port Background
True/Inversion

B Port Memory
Operation

Operation
Control

00 Increment 0 Up 0 True 0 Read 0 True 0 Read 00 NOP
01 Branch 1 Down 1 Inversion 1 Write 1 Inversion 1 Write 01 Row
10 RDBranch 10 Column

Opcode

11 Pause 11 Terminate

column address counter and the row address counter. The
^Row and ^Column options of Inst[4:2] are used to support the
diagonal, fast row, and fast column methods. ^Row and
^Column are conditional arithmetic functions for fast diagonal
addresses. The ^Row is a function for arithmetic operations
that increases the row addresses infinitely. The ^Column is a
function for arithmetic operations that increases the column
addresses infinitely. The basic method of address generation is
the fast diagonal method. The D states are the options to
increase and decrease the address as much as the value saved at
the D register when the address was generated. These options
are used to materialize such algorithms as the butterfly
algorithm. The Operation Control field (Inst[1:0]) designates
the instruction option. The NOP state means no operation. The
X←Y and Y←X states are the options to generate addresses by
exchanging the values of the X counter and the Y counter.

By controlling the four counters, a complex address
sequence based on the non-March algorithms can easily be
generated. In addition, a simple dual-port memory test is
supported through the port selection bit. Shown in Fig. 2 are
test patterns based on the Galloping algorithm, a nonlinear
March algorithm. A representative implementation of the
Galloping algorithm via a nonlinear instruction set is shown in
Fig. 3.

To implement the March-based test algorithms, the linear
instruction set includes instructions with a fixed length of 9 bits.
Dual-port memory tests based on the March algorithms are
also supported through the linear instruction set. Therefore,
various memory operations and features for each IO port can
be implemented with the linear instruction set. The basic
method that is used to generate the address of the linear
instruction set is the fast diagonal method. The architecture and
the features of the linear instruction set are shown in Table 2.

The Instruction Control field (Inst[8:7]) of the linear
instruction set is equivalent to its counterpart (Inst[13:12]) in
the nonlinear instruction set. The Address Up/Down field
(Inst[6]) determines the direction of the address generation for
the March and dual-port memory algorithms. The Background
True/Inversion field (Inst[5]) determines the background data

Fig. 4. Materialization of March A2PF algorithm using linear
instruction set.

0000 0 0
0001 0 0
0010 0 1
0011 0 1

0 1 0 1

1 0 0 0 0
0 0 0 0 0
1 0 0 0 1
1 1 0 0 1

0 1 0 1 0 1 0
0

0
1

1
0

1
1

Branch 1

Branch 2 0100 0 1 0 1 0 0 0
RDBranch 3

0 1
0 0
0 0
0 0

0
0

0
1

1
0

1
1

0 1
0101 0 1
0110 1 0
0111 1 1
1000 1 1

0 1 0 0 0
0 0 0 0 0
1 0 0 1 0
1 1 0 1 0

Branch 4
RDBranch 5

1001 1 1 0 1 0 0 0

Branch 6

1 0
0 0
0 0
0 0
0 1

1010 1 1 0 1 0 0 0
1011 1 0 0 0 0 1 1

1 0
0 1

0000
0001

Branch
address

1
2

#

Branch register

00013
0110
0110

4
5

10116

In
str

uc
tio

n
#

A
dd

re
ss

 U
p

A
dd

re
ss

 D
ow

n
A

 P
or

t B
ac

kg
ro

un
d

Tr
ue

A
 P

or
t M

em
or

y
O

pe
ra

tio
n

(r
ea

d)
A

 P
or

t M
em

or
y

O
pe

ra
tio

n
(w

rit
e)

Co
nt

ro
l (

N
O

P)
Co

nt
ro

l (
R

ow
)

Co
nt

ro
l (

C
ol

um
n)

Co
nt

ro
l (

te
rm

in
at

e)

A
 P

or
t B

ac
kg

ro
un

d
In

ve
rs

io
n

B
 P

or
t B

ac
kg

ro
un

d
Tr

ue

B
 P

or
t M

em
or

y
O

pe
ra

tio
n

(r
ea

d)
B

 P
or

t M
em

or
y

O
pe

ra
tio

n
(w

rit
e)

B
 P

or
t B

ac
kg

ro
un

d
In

ve
rs

io
n

In
cr

em
en

t
B

ra
nc

h
R

D
B

ra
nc

h
Pa

us
e

type for Port A. The A Port Memory Operation field (Inst[4])
defines the memory access type for Port A. If this field is “0,” a
read operation is performed; otherwise, a write operation is
performed. The Background True/Inversion field (Inst[3])
determines the background data type for Port B. The B Port
Memory Operation field (Inst[2]) defines the memory access
type for Port B. To test one-port faults, the Inst[3] and Inst[2]
bits are fixed at a logic value of “0” so that the test generation
for Port B can be deactivated. The Operation Control field
(Inst[1:0]) signifies the instruction option that is generally used
for the testing of dual-port memory. During the dual-port
memory test, write operations are performed on a cell through
one port, while read operations are performed on a neighboring
cell in the same column (or the same row) through the other
port. As an example, for Inst[1:0]=“10,” the port address for the
read operation is generated in the adjacent direction of the
column.

The linear instruction set uses a smaller number of bits than
the previous instruction sets when implementing March-based
algorithms. For example, in a March stage such as ↑(r1, w0,

ETRI Journal, Volume 35, Number 5, October 2013 Youngkyu Park et al. 813

r0); or ↑(r0, w1, r1);, six March elements (r1, w0, r0, r0, w1,
and r1) are implemented by six instructions of the previous
instruction set, but the linear instruction set is implemented in
four instructions. This is possible because of the RDBranch
state in Inst[8:7] of the linear instruction set. Therefore, the
March A2PF algorithm of 18N [18] is implemented with 12
instructions, involving a reduction of six instructions. Figure 4
shows the materialization of the March A2PF algorithm with
the linear instruction set.

2. FPMBIST Architecture

In this study, a new advanced PMBIST architecture and test
algorithm are proposed to test both single-port memory and
dual-port memory. The FPMBIST supports algorithm
downloading from the external ATE so that single-port
memory and dual-port memory can be tested via TMS and
TAS. A block diagram of the proposed FPMBIST design is
shown in Fig. 5.

The FPMBIST architecture consists of the BIST controller
(BCTR), TPG, and diagnostic data processing module (DPM)
blocks. The BCTR block reads instruction codes from the
instruction memory and conveys them to the TPG block. In
addition, the BCTR controls the FPMBIST via the input ports,
such as CMDL, TMS, TAS, DPS, Pause Time Select (PTS),
and MTestH. The TPG block generates the test address, test
data, and test control patterns based on the instruction codes
and control signals from the BCTR block. The DPM block
transforms the fault information that was obtained by
conducting the memory tests into diagnostic data and provides
it to the external ATE for repair or diagnosis.

The input signals of the FPMBIST include BIST Reset
Signal (BRS), MTestH, TMS, CMDL, TAS, DMS, PTS, and
CMD. The MTestH signal forces the FPMBIST to enter test
mode. The CMDL signal forces the FPMBIST to enter
program mode, where the instruction code sequence is stored
in the internal instruction memory from the external ATE. The
TMS signal conveys the memory type to be tested. If TMS is
“0,” the target is single-port memory; otherwise, the target is
dual-port memory. The TAS signal determines the instruction
set type of the current instructions. If TAS is “0,” then the
instructions belong to the linear instruction set for the March-
based and dual-port memory test algorithm; otherwise, the
instructions belong to the nonlinear instruction set for the non-
March algorithm. Through the use of both TMS and TAS, the
target memory port type and the test algorithm are determined.
BRS is the reset signal for FPMBIST, while the CMD signal
receives instruction codes from the ATE. The DMS signal is
used to select the type of diagnostic data to be provided to the
external ATE. The PTS signal is entered from the ATE for data
retention tests. The BIST Finish Signal (BFS) is an output pin
that is used to indicate that the BIST operation is finished.
BIST Fault Out (BFO) is an output that is used to send the
diagnostic data to the ATE.

As shown in Fig. 5, the BCTR block controls the FPMBIST
operations and the flow of instructions. The BCTR block
consists of a CMD block, CMD controller, and FPMBIST
controller. The FPMBIST controller controls the FPMBIST
based on the input signals from the external ATE and controls
the ability of the CMD block to read and store the instructions
from the ATE to the internal instruction memory during the
program mode. The FPMBIST controller also controls each

Fig. 5. FPMBIST architecture.

Instruction 2

Data
generator

Comparator

BRS

Instruction
memory

Control signal
generator

CLK

CMD
controller Address

generator

PMBIST controller

MTestH

BFO

Instruction 1

Instruction 4
Instruction 3

Instruction 19
Instruction 20

CMD
loader

CMD o

CMD block

CMD
decoder

CMD
op.

selector

BCTR TPG

CMDL

BFS

TMS
TAS

PTS
DVS

Bypass module

FIR/FID module

Diagnostic data processing module (DPM)

DMS

Branch
register

DPM controller

2

P-to-S

I/O
 se

le
ct

or

Dual-port
memory

Single-port
memory

oe_A
web_A
csb_A

n addr_A
m

data_i/o_A

oe_B
web_B
csb_B

addr_B n

m
data_i/o_B

oe
web
csb

n
addr

m
data_i/o

814 Youngkyu Park et al. ETRI Journal, Volume 35, Number 5, October 2013

internal block so that test patterns can be generated during the
test mode. The CMD block loads and stores the instruction
codes from the external ATE to the internal instruction
memory. The CMD controller reads and sends the instruction
sequence from the instruction memory to the CMD decoder
in the TPG block. The CMD controller has a branch register
that stores branch addresses to effectively control the
branches of the instructions. The instruction sets generate
complex patterns by simply exploiting the multi-loops
through the branch register.

The test patterns are generated in the TPG block and are
applied to the large-capacity memory. A pass/fail test is then
performed and the results are determined. The TPG block
consists of a CMD decoder, control signal generator, address
generator, data generator, comparator, and IO selector. The
CMD decoder interprets the instructions from the instruction
memory and generates the test pattern information for the test
generators (control signal generator, address generator, and data
generator). The instructions from the CMD block are received
and interpreted by the CMD decoder, which includes a CMD
operation selector circuit to determine the instruction type
(linear and nonlinear instruction sets). The CMD decoder then
interprets the instructions according to the corresponding
instruction type. The control signal generator produces
memory control signals, while the data generator generates
memory test data based on the instruction decoding results. The
address generator produces a test address, and the comparator
determines the test results by comparing the test response data
from the target memory with the test reference data from the
data generator. The control signal, address, and data generators
can generate both single-port memory and dual-port memory
test patterns. The IO selector determines the output ports of the
test patterns according to the target memory.

The TPG of the proposed FPMBIST includes an address
generator to support diverse methods (fast diagonal, fast row,
and fast column) for the complex address sequence generation
of diverse algorithms. The address generator consists of two
counters to support a two-level loop, as shown in Fig. 6. The
address increment and decrement sequences are sufficient for
most March algorithms. However, for non-March algorithms,
the address sequences are generated through diverse loops;
consequently, a single counter cannot support address
generation. Therefore, the proposed address generator
independently exploits two counters (the X and Y counters) to
easily generate a complex address sequence. Each counter
consists of a column counter and a row counter, and it includes
a D register that can count to the specified value. The D register
designates the values at the BIST controller. In addition,
various counting offsets can be set by the ATE to generate
diverse address sequences.

Fig. 6. Address generator.

Counter Y
n

n

n

f

Column
counter

Counter X

Row
counter

Column
counter

Row
counter

Y_in_Sel ^Column_X ^Row_X

D
 R

eg
.

X_in_Sel ^Column_Y ^Row_Y O_Sel_X/Y

cnt_out

cnt_in_X

D_reg_in

cnt_in_Y

Fig. 7. Diagnostic data processing module.

Bypass mode
Bypass module

Fail monitor

Operation

DPM controller

addrn
5

2

Address

Mode control

Parallel-
to-serial

fault_
out

DPM_mode

fault_in

pattern_info.

FIR/FID mode

Figure 7 shows the simplified block diagram of the DPM
design. The DPM block generates the diagnostic data using the
memory test results received from the TPG. The DPM block
supports three types of diagnostic methods: bypass, FIR, and
FID. The bypass method is a mode to support the fault
information of 1 bit whether the memory is faulty or not. If a
fault is detected, a “1” will be shown; if no fault is detected, a
“0” will be shown. FIR is a mode that supports fault address
information for redundancy analysis. FIR supports the fault
syndrome and the address information for faulty memory cells.
FID is a mode to support detailed diagnostic information for a
fault analysis. FID’s diagnostic data consists of the fault
syndrome, the fault cell address, and the pattern that detected
the fault. Since the background data is selected by the ATE,
background data information is not necessary. The DPM
modifies the diagnostic data created in the FIR and FID modes
into serial data by using a parallel-to-serial circuit and then
serially outputs the data to the external ATE.

Figure 8 shows the diagnostic data formats of the FIR and
FID. The FIR format consists of two fields: the fault syndrome
and the fault address. The FID format consists of three fields:
the fault detecting pattern, the fault syndrome, and the fault
address. The fault syndrome is the fault data information of
faulty cells. The fault address is the address of the faulty cell.

ETRI Journal, Volume 35, Number 5, October 2013 Youngkyu Park et al. 815

Fig. 8. Diagnostic data format of FIR and FID.

Fault detecting pattern Fault address

Fault address

(a) FIR mode

(b) FID mode

Fault syndrome

Fault syndrome

dm d0 an a0

i4 i0 dm d0 an a0

The fault detecting pattern reports the read operation in the test
algorithm that detected the fault.

IV. Implementation and Verification

To evaluate the proposed FPMBIST, the FPMBIST
architecture is implemented using the Samsung embedded
single-port SRAM (16.3 K×16) and dual-port SRAM (8.2 K
×32) [19], which can be used for SoC designs. The target
single-port memory is an SRAM with a 7-bit row address, a
7-bit column address, and a 16-bit data word. The target dual-
port memory is an SRAM with a 9-bit row address, a 4-bit
column address, and a 32-bit data word. In addition, various
memory test algorithms for single-port memory testing (March
Y, March C+, March SS, Walking, and Galloping) and dual-
port memory testing (March s2PF, March A2PF) are
microprogrammed via the proposed instruction set. The
proposed FPMBIST scheme is designed with Verilog HDL
and is synthesized using a Synopsys Design Compiler with
TSMC 0.13-μm CMOS technology.

The instruction bit size of the proposed instruction set that is
used to generate the test patterns is shown in Table 3. The
instruction set does not require as many instructions as the
number of March elements when it implements March-based
algorithms. For example, the March C+ algorithm of 14N
requires 10 instructions to implement algorithms with linear
instruction sets. This is possible because of the RDBranch
function. Accordingly, the March C+ algorithm requires 90 bits
(10×9 bits) of instruction memory. The March s2PF and March
SS algorithms [20] are implemented with nine instructions and
fourteen instructions, respectively, from the linear instruction
set. The Galloping algorithm was implemented with only
seven instructions from the nonlinear instruction set. The
nonlinear instruction set generates complex patterns by simply
exploiting the two-level loop of the address generator and the
multiple loops through the branch register.

The FPMBIST generates test patterns using the instruction
codes stored in the internal instruction memory. The sizes of
the codes determine the total BIST area overhead. Since most
of the conventional memory test algorithms and the proposed

Table 3. Instruction bit sizes for test algorithm.

Algorithm Instruction set Instruction set size Instruction bit

Galloping Nonlinear
instruction set 14 bits 98 bits

Butterfly Nonlinear
instruction set 14 bits 140 bits

March Y (8N) Linear
instruction set 9 bits 54 bits

March C+ (14N) Linear
instruction set 9 bits 90 bits

March SS (22N) Linear
instruction set 9 bits 126 bits

March s2PF (14N) Linear
instruction set 9 bits 81 bits

March A2PF (18N) Linear
instruction set 9 bits 108 bits

Fig. 9. Areas of different components of FPMBIST architecture.

0
500

1,000
1,500
2,000
2,500
3,000

PM
B

IS
T

co
nt

ro
lle

r

C
M

D
 b

lo
ck

C
M

D
 c

on
tro

lle
r

C
M

D
 d

ec
od

er

A
dd

re
ss

 g
en

er
at

or

D
at

a
ge

ne
ra

to
r

C
on

tro
l s

ig
na

l
ge

ne
ra

to
r

C
om

pa
ra

to
r

I/O
 se

le
ct

or

D
PM

Components of SPMBIST

A
re

as
 (G

at
es

)

dual-port memory test algorithms are encoded with fewer
than 30 instructions, the instruction memory size is 70 bytes
(14 bits×40). According to the synthesis results, the hardware
area (or gate count) of the proposed FPMBIST with a
70-byte instruction memory is estimated to be 7,942 gates,
and the maximum operating frequency is calculated to be
400 MHz.

A performance comparison of the proposed FPMBIST and
previous microcode-based PMBIST schemes is also shown in
Table 4. The architectures from [12]-[14] are programmable
memory BIST schemes for single-port memory testing,
whereas the schemes from [15] and [16] are intended for dual-
port memory testing.

The area overhead of each internal block of the PBIST is
shown in Fig. 9. The CMD block, address generator, and DPM
occupy about 67.5% of the total hardware area. The address
generator occupies a large area because it requires a complex
counter architecture. The diagnostic module also occupies

816 Youngkyu Park et al. ETRI Journal, Volume 35, Number 5, October 2013

Table 4. Performance comparison.

 [12] [13] [14] [15] [16] FPMBIST

Single-port memory Y Y Y Y Y Y
Target memory

Dual-port memory N N N Y Y Y

March-based algorithm Y Y Y Y Y Y

Galloping, sliding diagonal Y Y Y N N Y Non-March
algorithm Butterfly N Y N N N Y

Target
test

algorithm
Dual-port memory test algorithm N N N Y Y Y

Data retention fault test N N N N N Y

Fast diagonal Y Y Y Y Y Y

Fast row N N N N N Y
Address

generation
methods Fast column N N N N N Y

Flexibility Medium High High Medium Medium Very high

Multi-loop N Y Y P N Y

Maximum frequency NA NA 300 MHz NA NA 400 MHz

Fault information Y Y N N N Y Diagnostic
scheme Efficiency Medium Medium NA NA NA High

Linear instruction set size (bit) 9 Instruction set
architecture Nonlinear instruction set size (bit)

9 8 9 4 NA
14

Instruction bits of March Y (bit) 90 120 72 68 NA 54

Instruction bits of March C+ (bit) 144 216 126 108 NA 90

Instruction bits of March SS (bit) 216 344 198 140 NA 117

Instruction bits of March s2PF (bit) NA NA NA 216 NA 81

Instruction bits of March A2PF (bit) NA NA NA NA NA 99

Instruction bits of Walking (bit) NA NA 90 NA NA 84

Materialization
of test algorithm

Instruction bits of Galloping (bit) NA NA 108 NA NA 98

Area overhead (gate) 8.9 K 13.6 K 6.4 K 9.9 K NA 7.9 K

Y: support, N: not support, P: partially support, NA: not available

about 12.6% of the area overhead.

Table 4 shows a comparison of the proposed scheme and
previous programmable BIST schemes in terms of the testable
memory types, supportable test algorithm, instruction size, and
the instruction memory requirements. In Table 4, March C+ is
used for the single-port memory test, whereas March s2PF is
employed for the dual-port memory test. The hardware areas of
the proposed scheme and of the previous architectures are also
displayed in Table 4.

The architectures in [12] and [13] can support March and
non-March algorithms; however, the scheme in [12] cannot
encode all non-March algorithms since multi-loop is not
supported. The scheme in [13] can support multi-loop
performance, but the hardware area is too large. The
architecture in [14] supports both March and some non-March
algorithms. The scheme in [14], which supports the Galloping

algorithm, requires 108 bits of instruction memory. It also
supports multi-loop performance and reduces the area
overhead. The schemes in [12] and [13] include diagnostic
logic with gate counts of 0.3 K and 1.2 K, respectively.
However, the diagnostic logic supports only the failing
memory address and the fail-map data as fault information, and
thus an accurate fault analysis is not possible. Also, the
PMBIST schemes in [12]-[14] can only test single-port
memory, not dual-port memory.

The architectures in [15] and [16] can encode all March
algorithms and portions of the dual-port memory test
algorithms. The schemes of [15] and [16] cannot encode the
A2PF algorithm and can only access the same cell through two
different ports. Therefore, it is not possible to detect all faults in
dual-port memory. In addition, non-March algorithms for
single-port memory cannot be programmed; thus, the fault

ETRI Journal, Volume 35, Number 5, October 2013 Youngkyu Park et al. 817

coverage is constrained.
The proposed FPMBIST can encode all March and non-

March algorithms for both single-port memory and dual-port
memory. In addition, since multi-loop performance is
supported, complex algorithms can be efficiently programmed.
To encode the March C+ (14N), March s2PF (16N), and
Galloping algorithms, 90-bit, 81-bit, and 98-bit instruction
memory is required, respectively, through the linear and
nonlinear instruction sets. The nonlinear instruction set (14 bits)
has five more bits than the instruction set (9 bits) proposed in
[14]. However, it uses 10 fewer bits to implement the
Galloping algorithm. Furthermore, it can effectively implement
diverse non-March algorithms and it can support data retention
tests and so on. As a result, the memory sizes are considerably
smaller than those in previous PMBIST schemes. The
implementation results reveal that the hardware area of the
proposed scheme is the smallest. The proposed FPMBIST can
test both single-port memory and dual-port memory and can
support various test algorithms in a small hardware area. In
addition, since memory of the same port type can be grouped
into one BIST test domain with the proposed FPMBIST
scheme, various embedded memory cores can easily be tested
with relatively smaller area overhead and shorter test
application times. Furthermore, the FPMBIST has an efficient
diagnostic module that supports the bypass, FID, and FIR
methods for repair and diagnosis. The diagnostic module
improves memory yield by effectively supporting diverse
diagnostic data to the external ATE.

V. Conclusion

A new microcode-based flexible programmable BIST
scheme was proposed to encode various algorithms for
memory of different port types. The linear and nonlinear
instruction sets were also developed to support all March-
based algorithms, dual-port memory test algorithms, and non-
March-based algorithms for both single-port memory and
dual-port memory. In addition, the FPMBIST supports the
data retention test. Due to the efficient address generator
architectures and the use of diverse address generation
methods (fast diagonal, fast row, and fast column), the
instruction sets can reduce the instruction memory
requirement and reduce the BIST hardware area. The
diagnostic module improves memory yield by effectively
supporting diverse fault information for repair and diagnosis.
According to the experiment results, the proposed FPMBIST
scheme can ensure more flexible programmability for various
test algorithms and a smaller instruction memory requirement
and is able to support memory of diverse port types in a small
hardware area.

References

[1] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing Embedded-
Core-Based System Chips,” IEEE Comput., vol. 32, issue 6, 1999,
pp. 52-60.

[2] W.L. Wang, K.J. Lee, and J.F. Wang, “An On-Chip March
Pattern Generator for Testing Embedded Memory Cores,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 9, issue 5, 2001,
pp. 730-735.

[3] A. van de Goor et al., “Low-Cost, Customized and Flexible
SRAM MBIST Engine,” Proc. Int. Symp. Design Diagnostics
Electron. Circuits Syst., 2010, pp. 382-387.

[4] K. Zarrineh, S.J. Upadhyaya, and S. Chakravarty, “A New
Framework for Generating Optimal March Tests for Memory
Arrays,” Proc. Int. Test Conf., Oct. 1998, pp. 73-82.

[5] S. Hamdioui, Z. Al-Ars, and A.J. van de Goor, “Testing Static and
Dynamic Faults in Random Access Memories,” Proc. VLSI Test
Symp., Apr. 2002, pp. 395-400.

[6] A. van de Goor et al., “Generic, Orthogonal and Low-cost March
Element Based Memory BIST,” Proc. IEEE Int. Test Conf., 2011,
pp. 1-10.

[7] C. Cheng et al., “BRAINS: A BIST Compiler for Embedded
Memories,” Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst., Oct. 2000, pp. 299-307.

[8] K. Yamasaki et al., “External Memory BIST for System-in-
Package,” Proc. Int. Test Conf., Nov. 2005, pp. 1145-1154.

[9] A.W. Hakmi et al., “Programmable Deterministic Built-In Self-
Test,” Proc. IEEE Int. Test Conf., Oct. 2007, pp. 1-9.

[10] N.Q. Mohd Noor, A. Saparon, and Y. Yusof, “An Overview of
Microcode-Based and FSM-Based Programmable Memory
Built-in Self-Test (MBIST) Controller for Coupling Fault
Detection,” Proc. IEEE Symp, Ind. Electron. Appl., Oct. 2009,
pp. 469-472.

[11] H.C. Lu and J.F. Li, “A Programmable Online/Off-line Built-in
Self-Test Scheme for RAMs with ECC,” Proc. Int. Symp.
Circuits Syst., May 2009, pp. 1997-2000.

[12] X. Du et al., “Full-Speed Field-Programmable Memory BIST
Architecture,” Proc. IEEE Int. Test Conf., Nov. 2005,
pp. 1165-1173.

[13] X. Du et al., “A Field Programmable Memory BIST Architecture
Supporting Algorithms with Multiple Nested Loops,” Proc.
IEEE Asian Test Symp., Nov. 2006, pp. 287-292.

[14] Y. Park et al., “An Effective Programmable Memory BIST for
Embedded Memory,” IEICE Trans. Inf. Syst., vol. E92-D, no. 12,
Dec. 2009, pp. 2508-2511.

[15] A. Benso et al., “A Programmable BIST Architecture for Clusters
of Multiple-port SRAMs,” Proc. IEEE Int. Test Conf., Oct. 2000,
pp. 557-566.

[16] M. Karunaratne and B. Oomman, “Optimized BIST for
Embedded Dual-Port RAMs,” Proc. IEEE Midwest Symp.

818 Youngkyu Park et al. ETRI Journal, Volume 35, Number 5, October 2013

Circuits Syst., Aug. 2010, pp. 125-128.
[17] S. Hamdioui and A.J. van de Goor, “Efficient Tests for Realistic

Faults in Dual-Port SRAMs,” IEEE Trans. Comput., vol. 51,
issue 5, 2002, pp. 460-473.

[18] Y. Park et al., “An Effective Test and Diagnosis Algorithm for
Dual-Port Memories,” ETRI J., vol. 30, no. 4, Aug. 2008,
pp. 555-564.

[19] Samsung 0.13 μm Generic Process Compiled Memory
(STD150E), Data Book of Samsung Electronics, May 2005.

[20] S. Hamdioui, A.J. van de Goor, and M. Rodgers, “March SS: A
Test for All Static Simple RAM Faults,” Proc. IEEE Int.
Workshop Memory Technol., Design, Testing, July 2002,
pp. 95-100.

Youngkyu Park received his B.S. degree in
electronics engineering from Hoseo University,
Rep. of Korea, in 2004 and his M.S. and Ph.D.
degrees in electrical and electronics engineering
from Yonsei University, Seoul, Rep. of Korea,
in 2007 and 2013, respectively. From 2013, he
was a senior engineer with Memory Division,

Samsung Electronics Company, Rep. of Korea. His current research
interests include VLSI design and testing, memory BIST, and design
for testability.

Hong-Sik Kim received his BS, MS, and PhD
degrees in electrical and electronics engineering
from Yonsei University, Seoul, Rep. of Korea,
in 1997, 1999, and 2004, respectively. In 2005,
he was a postdoctoral fellow with the Virginia
Institute of Technology, Blacksburg, VA, USA.
In 2006, he was a senior engineer with System

LSI Group, Samsung Electronics Company, Rep. of Korea. From
2007 to 2010, he was a research professor with Yonsei University.
Since 2010, he has been a senior engineer with SK Hynix
Semiconductor. His current research interests include design for
testability, lossless data compression, 3-D graphics rendering hardware
design, and new memory/storage subsystems.

Inhyuk Choi received his BS in electrical and
electronics engineering from Yonsei University,
Seoul, Rep. of Korea, in 2009. Currently, he is
working toward a combined MS/PhD in
electrical and electronics engineering at Yonsei
University. His research interests include SoC
design, design for testability, and system-level

test and validation.

Sungho Kang received his BS in control and
instrumentation engineering from Seoul
National University, Seoul, Rep. of Korea, and
his MS and PhD in electrical and computer
engineering from the University of Texas at
Austin, Austin, TX, USA, in 1992. He was a
research scientist with the Schlumberger

Laboratory for Computer Science, Schlumberger Inc., and a senior
staff engineer with Semiconductor Systems Design Technology,
Motorola Inc. Since 1994, he has been a professor in the Department of
Electrical and Electronic Engineering, Yonsei University, Seoul, Rep.
of Korea. His main research interests include VLSI/SOC design and
testing, design for testability, and design for manufacturability.

	I. Introduction
	II. Previous Works on PMBIST Architecture
	III. FPMBIST
	IV. Implementation and Verification
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

