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Programmable memory built-in self-test (PMBIST) is 
an attractive approach for testing embedded memory. 
However, the main difficulties of the previous works are 
the large area overhead and low flexibility. To overcome 
these problems, a new flexible PMBIST (FPMBIST) 
architecture that can test both single-port memory and 
dual-port memory using various test algorithms is 
proposed. In the FPMBIST, a new instruction set is 
developed to minimize the FPMBIST area overhead and 
to maximize the flexibility. In addition, FPMBIST includes 
a diagnostic scheme that can improve the yield by 
supporting three types of diagnostic methods for repair 
and diagnosis. The experiment results show that the 
proposed FPMBIST has small area overhead despite the 
fact that it supports various test algorithms, thus having 
high flexibility. 
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I. Introduction 

Advances in semiconductor technology and reuse design 
methodologies have enabled many intellectual property cores, 
such as processor cores, large capacity embedded memory, and 
mixed signal analog cores, to be integrated on a single chip. 
Such integration is referred to as the system on chip (SoC) 
design methodology. In current SoC products, embedded 
memory cores occupy most of the chip area and thus have 
become a key factor in the reliability of SoC devices. In 
addition, the limited bandwidth of external automated test 
equipment (ATE) makes the testing of embedded memory 
cores more difficult. Therefore, embedded memory core testing 
in the SoC design environment has become a very important 
and time-consuming task [1]-[3]. 

Single-port memory and dual-port memory are widely used 
as embedded memory in SoC products. In single-port memory, 
the data transactions are conducted through a single IO port, 
whereas in dual-port memory, two different data transactions 
can be simultaneously performed through two independent IO 
ports. As such, the fault models and test algorithms of single-
port memory are different from those of dual-port memory. 
However, most of the research in the field of embedded 
memory testing has been devoted to single-port memory [4]-
[6]. 

The memory built-in self-test (BIST) technique is widely 
regarded as an optimal embedded memory test in the SoC 
design environment since it can enable an at-speed test with 
reduced IO channel test bandwidth [7], [8]. However, 
previously developed memory BIST methods only support a 
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limited test based on the March algorithm and the restrictive 
non-March algorithm, and, as a result, the flexibility and fault 
coverage are restricted. Programmable memory BIST 
(PMBIST) methodologies have been proposed to enhance the 
flexibility of conventional memory BIST techniques and to test 
diverse fault models [9]-[11]. Flexibility in PMBIST is defined 
as how various test algorithms can be supported and is one of 
the main concerns for PMBIST. PMBIST techniques can 
improve the flexibility of conventional memory BIST 
techniques to accommodate various test algorithms. However, 
these techniques increase the area overhead significantly.  

The majority of research in the field of embedded memory 
testing has focused on single-port memory. However, research 
regarding PMBIST architecture for dual-port memory is also 
important. PMBIST has tradeoffs between its fault coverage 
and area overhead. This is because supporting various test 
algorithms requires a large area overhead, and, if the number of 
supported test algorithms is limited, the area overhead shrinks 
but the fault coverage also decreases. Thus, a PMBIST 
architecture for both single-port memory and dual-port 
memory is needed. The PMBIST should be able to support 
various test algorithms with a small area overhead. To improve 
the memory yield, a diagnostic test is also needed. The 
diagnostic data is generated by the BIST circuit. 

In this work, a new microcode-based PMBIST architecture 
is proposed to test both single-port memory and dual-port 
memory. The proposed flexible PMBIST (FPMBIST) supports 
March-based algorithms, non-March algorithms, and dual-port 
memory test algorithms. That is, all fault models for single-port 
memory and dual-port memory can be addressed with a single 
BIST architecture. Such a scheme allows for the grouping of 
single-port memory and dual-port memory into the same BIST 
domain so that the total BIST area can be reduced and so that 
simple test scheduling is possible. An optimized instruction set 
is also proposed in this study to reduce the area overhead of the 
programmable BIST circuitry. Furthermore, the FPMBIST 
design supports three types of diagnostic methods. With this 
diagnostic scheme, the FPMBIST design can increase the 
memory yield. 

II. Previous Works on PMBIST Architecture 

Generally, PMBIST can be classified into one of two types: 
finite state machine (FSM)-based and microcode-based. FSM-
based PMBIST allows the ATE to choose a test algorithm from 
several predetermined FSM components of test algorithms. 
This method usually has low test complexity and small area 
overhead but has relatively low flexibility and fault coverage. 
On the other hand, the microcode-based PMBIST is the most 
widely used approach. The microcode-based PMBIST saves 

the test algorithm in the form of instructions in internal storage 
and implements the test algorithm using the saved instructions. 
This method of PMBIST has high flexibility and fault coverage, 
but the area overhead increases significantly. 

A variety of architectures have been proposed for PMBIST 
design. The architecture in [12] can support five groups of test 
algorithms: March, Galloping/Walking, the test for the address 
decoder open, butterfly, and sliding diagonal. The base loop 
and local loop are also used to support non-March algorithms, 
but only a two-level loop is supported. As a result, the 
programming flexibility is restricted. The scheme in [13] 
upgrades the programmable BIST architecture of [12] by 
changing the instruction set to support multi-loop performance, 
and the architecture also supports a diagnostics scheme. 
However, the area overhead is significantly increased. 

The nonlinear PMBIST (NPMBIST) architecture in [14] 
was proposed to effectively test single-port memory and 
supports both March and non-March algorithms. The 
NPMBIST uses an optimized instruction set to minimize the 
area overhead and supports multi-loop performance to ensure 
the effective implementation of complicated test algorithms. 
However, NPMBIST does not allow algorithm downloading 
from external ATE and cannot support such non-March 
algorithms as data retention tests, butterfly, and so on. 
NPMBIST can only generate limited complicated addresses 
using the fast diagonal method. 

The architecture in [15] is a microcode-based programmable 
BIST scheme for dual-port memory testing. The test program 
set consists of 4-bit test primitives with which the 
microprogram for the target test algorithm is coded. The 
microprogram is stored in the μprogram memory. The ROM or 
an In-System Programmable module is used for the μprogram 
memory. This scheme can partially support multi-loop 
performance. The scheme of [15] can only access the same cell 
through two different ports. As such, only one port fault can be 
tested.  

The architecture in [16] is a BIST scheme for dual-port 
memory using the same interface as the standard 1149.1 test 
access port. This scheme tests the dual-port memory by 
generating test patterns with transformed test algorithms from a 
March-based test algorithm, such as March C– or March A. In 
this case, only the March-based test algorithm can be 
materialized without multi-loop support, so the programming 
flexibility is limited. Furthermore, it cannot detect 2PF2av 
faults [17] because it cannot write and read simultaneously at 
two different cells through two ports. 

III. FPMBIST 

In previous FSM-based MBIST schemes, fixed test patterns 
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based on test algorithms (such as the March algorithm) were 
supported such that the fault coverage and flexibility were 
restricted, even with a smaller hardware area. In addition, 
different BIST circuitries were required for single-port memory 
and dual-port memory. Consequently, the total memory BIST 
circuit area was increased. 

In this work, a new microcode-based FPMBIST architecture 
is proposed that supports various test algorithms and memory 
port types. The target test algorithm for the FPMBIST is 
programmed with microcodes based on the proposed 
instruction set and is stored in the internal memory. By 
decoding the microcode sequence, test patterns based on the 
target test algorithm are generated using the BIST logic. The 
FPMBIST can test both single-port memory and dual-port 
memory, so memory of the same IO-type can be grouped 
together into the same test domain. The total BIST area 
overhead can thus be reduced compared to conventional BIST 
schemes, and the embedded memory cores can be scheduled in 
a more flexible manner. 

Figure 1 shows the operating sequence of the FPMBIST for 
single-port memory and dual-port memory. Initially, the 
FPMBIST is in the Start state. In the Load_CMD state, the 
commands are loaded from the outside by the Command Load 
(CMDL) signals. In the Shift_CMD state, the commands are 
shifted to the decoder by the MTestH signals. The FPMBIST 
has two instruction sets to implement the algorithms. Therefore, 
the CMD decoder consists of two types of decoding logic. If 
Test Algorithm Select (TAS)=0, the FPMBIST will be in the 
Decode_LIS state, and the CMD decoder will decode 
commands with the decoding logic for the linear instruction set. 
If TAS=1, the FPMBIST will be in the Decode_NLIS state, 
and the CMD decoder will decode commands with the 
decoding logic for the nonlinear instruction set. In the 
Pattern_Generation state, the test patterns are generated by 
controlling the test pattern generator (TPG) by using signals 
received from the CMD decoder. In the Target_Memory_Test 
state, the target memory is determined by the Test Memory 
Select (TMS) signals, and is then tested. In the Diagnostic state, 
the fault information detected by the memory test is transmitted 
to the external ATE. This state is operated in two modes by the 
Diagnostic data Mode Select (DMS) signals. The purpose of 
the Bypass mode is to support the faulty information. The 
purpose of the Fault Information for Repair (FIR) mode is to 
support the fault syndrome and addresses of faulty cells for the 
redundancy analysis, and the purpose of the Fault Information 
for Diagnosis (FID) mode is to support the diagnostic data for a 
fault analysis consisting of the fault syndrome, the addresses of 
faulty cells, and the pattern that detected the fault. 

In previous dual-port memory BISTs, the testing was 
performed on the dual-port memory by applying the test  

 

Fig. 1. Operating sequence of FPMBIST. 
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stimuli through one port and receiving the test responses 
through the other port. In addition, one cell could be 
simultaneously read and written through different ports. 
However, several fault models, such as 2PFav, cannot be tested 
using these schemes. The proposed FPMBIST supports 
conventional BIST operational modes and can simultaneously 
access two different cells through two different ports. 

An instruction set is developed for the FPMBIST. A non-
March algorithm, such as the Galloping and sliding diagonal 
algorithms, and a March-based algorithm can easily be 
microcoded by the instruction sets. The instructions support 
most of the memory test algorithms with little hardware 
complexity and allow the microcode size to be optimized. In 
addition, the FPMBIST supports a data retention test and 
improves memory yield with the diagnostic scheme. 

1. Instruction Set Architecture 

In the proposed FPMBIST, the target test algorithm is 
programmed into microcode by the instruction set, which is 
stored in the internal memory. The microcode sequence is 
decoded into the original test stimuli during the BIST test cycle. 
The proposed instruction set is divided into a linear instruction 
set and a nonlinear instruction set according to the target fault 
model. The nonlinear instruction set is used in the non-March-
based test of one-port related fault models, and the linear 
instruction set is employed in the March-based test of one-port  
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Table 1. Nonlinear instruction set. 

Instruction set Inst[13:12] Inst[11] Inst[10] Inst[9] Inst[8] Inst[7] Inst[6] Inst[5] Inst[4:2] Inst[1:0] 

Function Instruction 
Control 

Background 
True/Inversion 

Memory
Operation

Port 
Select 

Column
Output

Row 
Output

Column
Counter

Row 
Counter Counter Control Operation 

Control 
00 Increment 0 True 0 Read 0 A 0 CX 0 RX 0 CX 0 RX 000 NOP 00 NOP 

01 Branch 1 Inversion 1 Write 1 B 1 CY 1 RY 1 CY 1 RY 001 CNOP 01 Y←X 

10 RDBranch          010 ^Row 10 X←Y 

11 Pause          011 ^Column 11 Terminate

Opcode 

           100 D  

 

 
and two-port fault models. The nonlinear instruction set can 
also support a simple dual-port memory test. The sizes of the 
linear and nonlinear instruction sets in this study are 9 bits and 
14 bits, respectively. In addition, multi-loop performance is 
supported by the nonlinear instruction set to more easily 
implement the non-March algorithm. The architectural features 
of the nonlinear instruction set are shown in Table 1. 

An Instruction Control field (Inst[13:12]) signifies the 
operational status so that the target test algorithm can be 
implemented. The Increment state allows the next instruction 
to be run, and the Branch state allows the program counter to 
jump to the destination instruction. The branch operation is 
performed through a branch register that also supports multi-
loop performance. The Return Data inversion Branch 
(RDBranch) state is the command to rerun the test program 
through the inversion of the background data, and the Pause 
state is the command to hold the instruction during a set time to 
detect a retention fault. The Background True/Inversion field 
(Inst[11]) determines the background data type. If this bit is 0, 
the background data fields are filled with “0”; otherwise, they 
are filled with “1.” The Memory Operation field (Inst[10]) 
defines the memory access type. If this field is “0,” the read 
operation is performed; otherwise, the write operation is 
performed. The Port Select field (Inst[9]) selects the memory 
port to be accessed. This bit allows the non-March algorithm 
that is implemented by the nonlinear instruction set to be 
applied to the dual-port memory test. The Column Output field 
(Inst[8]) selects the memory test column address between 
column counter X and column counter Y. The Row Output 
field (Inst[7]) selects the memory test row address between row 
counter X and row counter Y. The Column Counter field 
(Inst[6]) activates the column address counter (incremented/ 
decremented) between column counter X and column counter 
Y for the generation of the memory test column address. The 
Row Counter field (Inst[5]) activates the row address counter 
for the generation of the memory test row address. The column 
address and the row address generate one address. The Inst[8],  

 
 

Fig. 2. Test patterns of Galloping algorithm. 
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Fig. 3. Materialization of Galloping algorithm using a nonlinear
instruction set. 
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Inst[7], Inst[6], and Inst[5] sets are used for multi-loop 
performance so that a complex address sequence can be 
generated for the non-March algorithms. The Counter Control 
field (Inst[4:2]) designates the counter option. The NOP state 
means no operation. The CNOP state is an option for Inst[5] 
and Inst[4] to maintain the current value without counting the  
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Table 2. Linear instruction set. 

Instruction set Inst[8:7] Inst[6] Inst[5] Inst[4] Inst[3] Inst[2] Inst[1:0] 

Function Instruction 
Control 

Address 
Up/Down 

A Port Background
True/Inversion 

A Port Memory
Operation 

B Port Background
True/Inversion 

B Port Memory 
Operation 

Operation  
Control 

00 Increment 0 Up 0 True 0 Read 0 True 0 Read 00 NOP 
01 Branch 1 Down 1 Inversion 1 Write 1 Inversion 1 Write 01 Row 
10 RDBranch        10 Column 

Opcode 

11 Pause        11 Terminate 
 

 
column address counter and the row address counter. The 
^Row and ^Column options of Inst[4:2] are used to support the 
diagonal, fast row, and fast column methods. ^Row and 
^Column are conditional arithmetic functions for fast diagonal 
addresses. The ^Row is a function for arithmetic operations 
that increases the row addresses infinitely. The ^Column is a 
function for arithmetic operations that increases the column 
addresses infinitely. The basic method of address generation is 
the fast diagonal method. The D states are the options to 
increase and decrease the address as much as the value saved at 
the D register when the address was generated. These options 
are used to materialize such algorithms as the butterfly 
algorithm. The Operation Control field (Inst[1:0]) designates 
the instruction option. The NOP state means no operation. The 
X←Y and Y←X states are the options to generate addresses by 
exchanging the values of the X counter and the Y counter. 

By controlling the four counters, a complex address 
sequence based on the non-March algorithms can easily be 
generated. In addition, a simple dual-port memory test is 
supported through the port selection bit. Shown in Fig. 2 are 
test patterns based on the Galloping algorithm, a nonlinear 
March algorithm. A representative implementation of the 
Galloping algorithm via a nonlinear instruction set is shown in 
Fig. 3. 

To implement the March-based test algorithms, the linear 
instruction set includes instructions with a fixed length of 9 bits. 
Dual-port memory tests based on the March algorithms are 
also supported through the linear instruction set. Therefore, 
various memory operations and features for each IO port can 
be implemented with the linear instruction set. The basic 
method that is used to generate the address of the linear 
instruction set is the fast diagonal method. The architecture and 
the features of the linear instruction set are shown in Table 2.  

The Instruction Control field (Inst[8:7]) of the linear 
instruction set is equivalent to its counterpart (Inst[13:12]) in 
the nonlinear instruction set. The Address Up/Down field 
(Inst[6]) determines the direction of the address generation for 
the March and dual-port memory algorithms. The Background 
True/Inversion field (Inst[5]) determines the background data  

 

 

Fig. 4. Materialization of March A2PF algorithm using linear
instruction set.
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type for Port A. The A Port Memory Operation field (Inst[4]) 
defines the memory access type for Port A. If this field is “0,” a 
read operation is performed; otherwise, a write operation is 
performed. The Background True/Inversion field (Inst[3]) 
determines the background data type for Port B. The B Port 
Memory Operation field (Inst[2]) defines the memory access 
type for Port B. To test one-port faults, the Inst[3] and Inst[2] 
bits are fixed at a logic value of “0” so that the test generation 
for Port B can be deactivated. The Operation Control field 
(Inst[1:0]) signifies the instruction option that is generally used 
for the testing of dual-port memory. During the dual-port 
memory test, write operations are performed on a cell through 
one port, while read operations are performed on a neighboring 
cell in the same column (or the same row) through the other 
port. As an example, for Inst[1:0]=“10,” the port address for the 
read operation is generated in the adjacent direction of the 
column.  

The linear instruction set uses a smaller number of bits than 
the previous instruction sets when implementing March-based 
algorithms. For example, in a March stage such as ↑(r1, w0, 
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r0); or ↑(r0, w1, r1);, six March elements (r1, w0, r0, r0, w1, 
and r1) are implemented by six instructions of the previous 
instruction set, but the linear instruction set is implemented in 
four instructions. This is possible because of the RDBranch 
state in Inst[8:7] of the linear instruction set. Therefore, the 
March A2PF algorithm of 18N [18] is implemented with 12 
instructions, involving a reduction of six instructions. Figure 4 
shows the materialization of the March A2PF algorithm with 
the linear instruction set. 

2. FPMBIST Architecture 

In this study, a new advanced PMBIST architecture and test 
algorithm are proposed to test both single-port memory and 
dual-port memory. The FPMBIST supports algorithm 
downloading from the external ATE so that single-port 
memory and dual-port memory can be tested via TMS and 
TAS. A block diagram of the proposed FPMBIST design is 
shown in Fig. 5. 

The FPMBIST architecture consists of the BIST controller 
(BCTR), TPG, and diagnostic data processing module (DPM) 
blocks. The BCTR block reads instruction codes from the 
instruction memory and conveys them to the TPG block. In 
addition, the BCTR controls the FPMBIST via the input ports, 
such as CMDL, TMS, TAS, DPS, Pause Time Select (PTS), 
and MTestH. The TPG block generates the test address, test 
data, and test control patterns based on the instruction codes 
and control signals from the BCTR block. The DPM block 
transforms the fault information that was obtained by 
conducting the memory tests into diagnostic data and provides 
it to the external ATE for repair or diagnosis. 

 

The input signals of the FPMBIST include BIST Reset 
Signal (BRS), MTestH, TMS, CMDL, TAS, DMS, PTS, and 
CMD. The MTestH signal forces the FPMBIST to enter test 
mode. The CMDL signal forces the FPMBIST to enter 
program mode, where the instruction code sequence is stored 
in the internal instruction memory from the external ATE. The 
TMS signal conveys the memory type to be tested. If TMS is 
“0,” the target is single-port memory; otherwise, the target is 
dual-port memory. The TAS signal determines the instruction 
set type of the current instructions. If TAS is “0,” then the 
instructions belong to the linear instruction set for the March-
based and dual-port memory test algorithm; otherwise, the 
instructions belong to the nonlinear instruction set for the non-
March algorithm. Through the use of both TMS and TAS, the 
target memory port type and the test algorithm are determined. 
BRS is the reset signal for FPMBIST, while the CMD signal 
receives instruction codes from the ATE. The DMS signal is 
used to select the type of diagnostic data to be provided to the 
external ATE. The PTS signal is entered from the ATE for data 
retention tests. The BIST Finish Signal (BFS) is an output pin 
that is used to indicate that the BIST operation is finished. 
BIST Fault Out (BFO) is an output that is used to send the 
diagnostic data to the ATE.  

As shown in Fig. 5, the BCTR block controls the FPMBIST 
operations and the flow of instructions. The BCTR block 
consists of a CMD block, CMD controller, and FPMBIST 
controller. The FPMBIST controller controls the FPMBIST 
based on the input signals from the external ATE and controls 
the ability of the CMD block to read and store the instructions 
from the ATE to the internal instruction memory during the 
program mode. The FPMBIST controller also controls each  

 
  

Fig. 5. FPMBIST architecture. 
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internal block so that test patterns can be generated during the 
test mode. The CMD block loads and stores the instruction 
codes from the external ATE to the internal instruction 
memory. The CMD controller reads and sends the instruction 
sequence from the instruction memory to the CMD decoder 
in the TPG block. The CMD controller has a branch register 
that stores branch addresses to effectively control the 
branches of the instructions. The instruction sets generate 
complex patterns by simply exploiting the multi-loops 
through the branch register. 

The test patterns are generated in the TPG block and are 
applied to the large-capacity memory. A pass/fail test is then 
performed and the results are determined. The TPG block 
consists of a CMD decoder, control signal generator, address 
generator, data generator, comparator, and IO selector. The 
CMD decoder interprets the instructions from the instruction 
memory and generates the test pattern information for the test 
generators (control signal generator, address generator, and data 
generator). The instructions from the CMD block are received 
and interpreted by the CMD decoder, which includes a CMD 
operation selector circuit to determine the instruction type 
(linear and nonlinear instruction sets). The CMD decoder then 
interprets the instructions according to the corresponding 
instruction type. The control signal generator produces 
memory control signals, while the data generator generates 
memory test data based on the instruction decoding results. The 
address generator produces a test address, and the comparator 
determines the test results by comparing the test response data 
from the target memory with the test reference data from the 
data generator. The control signal, address, and data generators 
can generate both single-port memory and dual-port memory 
test patterns. The IO selector determines the output ports of the 
test patterns according to the target memory. 

The TPG of the proposed FPMBIST includes an address 
generator to support diverse methods (fast diagonal, fast row, 
and fast column) for the complex address sequence generation 
of diverse algorithms. The address generator consists of two 
counters to support a two-level loop, as shown in Fig. 6. The 
address increment and decrement sequences are sufficient for 
most March algorithms. However, for non-March algorithms, 
the address sequences are generated through diverse loops; 
consequently, a single counter cannot support address 
generation. Therefore, the proposed address generator 
independently exploits two counters (the X and Y counters) to 
easily generate a complex address sequence. Each counter 
consists of a column counter and a row counter, and it includes 
a D register that can count to the specified value. The D register 
designates the values at the BIST controller. In addition, 
various counting offsets can be set by the ATE to generate 
diverse address sequences. 

 

Fig. 6. Address generator. 
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Fig. 7. Diagnostic data processing module. 
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Figure 7 shows the simplified block diagram of the DPM 
design. The DPM block generates the diagnostic data using the 
memory test results received from the TPG. The DPM block 
supports three types of diagnostic methods: bypass, FIR, and 
FID. The bypass method is a mode to support the fault 
information of 1 bit whether the memory is faulty or not. If a 
fault is detected, a “1” will be shown; if no fault is detected, a 
“0” will be shown. FIR is a mode that supports fault address 
information for redundancy analysis. FIR supports the fault 
syndrome and the address information for faulty memory cells. 
FID is a mode to support detailed diagnostic information for a 
fault analysis. FID’s diagnostic data consists of the fault 
syndrome, the fault cell address, and the pattern that detected 
the fault. Since the background data is selected by the ATE, 
background data information is not necessary. The DPM 
modifies the diagnostic data created in the FIR and FID modes 
into serial data by using a parallel-to-serial circuit and then 
serially outputs the data to the external ATE. 

Figure 8 shows the diagnostic data formats of the FIR and 
FID. The FIR format consists of two fields: the fault syndrome 
and the fault address. The FID format consists of three fields: 
the fault detecting pattern, the fault syndrome, and the fault 
address. The fault syndrome is the fault data information of 
faulty cells. The fault address is the address of the faulty cell.  
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Fig. 8. Diagnostic data format of FIR and FID. 
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The fault detecting pattern reports the read operation in the test 
algorithm that detected the fault. 

IV. Implementation and Verification 

To evaluate the proposed FPMBIST, the FPMBIST 
architecture is implemented using the Samsung embedded 
single-port SRAM (16.3 K×16) and dual-port SRAM (8.2 K 
×32) [19], which can be used for SoC designs. The target 
single-port memory is an SRAM with a 7-bit row address, a 
7-bit column address, and a 16-bit data word. The target dual-
port memory is an SRAM with a 9-bit row address, a 4-bit 
column address, and a 32-bit data word. In addition, various 
memory test algorithms for single-port memory testing (March 
Y, March C+, March SS, Walking, and Galloping) and dual-
port memory testing (March s2PF, March A2PF) are 
microprogrammed via the proposed instruction set. The 
proposed FPMBIST scheme is designed with Verilog HDL 
and is synthesized using a Synopsys Design Compiler with 
TSMC 0.13-μm CMOS technology.  

The instruction bit size of the proposed instruction set that is 
used to generate the test patterns is shown in Table 3. The 
instruction set does not require as many instructions as the 
number of March elements when it implements March-based 
algorithms. For example, the March C+ algorithm of 14N 
requires 10 instructions to implement algorithms with linear 
instruction sets. This is possible because of the RDBranch 
function. Accordingly, the March C+ algorithm requires 90 bits 
(10×9 bits) of instruction memory. The March s2PF and March 
SS algorithms [20] are implemented with nine instructions and 
fourteen instructions, respectively, from the linear instruction 
set. The Galloping algorithm was implemented with only 
seven instructions from the nonlinear instruction set. The 
nonlinear instruction set generates complex patterns by simply 
exploiting the two-level loop of the address generator and the 
multiple loops through the branch register.  

The FPMBIST generates test patterns using the instruction 
codes stored in the internal instruction memory. The sizes of 
the codes determine the total BIST area overhead. Since most 
of the conventional memory test algorithms and the proposed  

Table 3. Instruction bit sizes for test algorithm. 

Algorithm Instruction set Instruction set size Instruction bit

Galloping Nonlinear 
instruction set 14 bits 98 bits 

Butterfly Nonlinear 
instruction set 14 bits 140 bits 

March Y (8N) Linear 
instruction set 9 bits 54 bits 

March C+ (14N) Linear 
instruction set 9 bits 90 bits 

March SS (22N) Linear 
instruction set 9 bits 126 bits 

March s2PF (14N) Linear 
instruction set 9 bits 81 bits 

March A2PF (18N) Linear 
instruction set 9 bits 108 bits 

 

 
 

Fig. 9. Areas of different components of FPMBIST architecture.
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dual-port memory test algorithms are encoded with fewer 
than 30 instructions, the instruction memory size is 70 bytes 
(14 bits×40). According to the synthesis results, the hardware 
area (or gate count) of the proposed FPMBIST with a    
70-byte instruction memory is estimated to be 7,942 gates, 
and the maximum operating frequency is calculated to be  
400 MHz. 

A performance comparison of the proposed FPMBIST and 
previous microcode-based PMBIST schemes is also shown in 
Table 4. The architectures from [12]-[14] are programmable 
memory BIST schemes for single-port memory testing, 
whereas the schemes from [15] and [16] are intended for dual-
port memory testing.  

The area overhead of each internal block of the PBIST is 
shown in Fig. 9. The CMD block, address generator, and DPM 
occupy about 67.5% of the total hardware area. The address 
generator occupies a large area because it requires a complex 
counter architecture. The diagnostic module also occupies  
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Table 4. Performance comparison. 

 [12] [13] [14] [15] [16] FPMBIST 

Single-port memory Y Y Y Y Y Y 
Target memory 

Dual-port memory N N N Y Y Y 

March-based algorithm Y Y Y Y Y Y 

Galloping, sliding diagonal Y Y Y N N Y Non-March 
algorithm Butterfly N Y N N N Y 

Target 
test 

algorithm 
Dual-port memory test algorithm N N N Y Y Y 

Data retention fault test N N N N N Y 

Fast diagonal Y Y Y Y Y Y 

Fast row N N N N N Y 
Address 

generation 
methods Fast column N N N N N Y 

Flexibility Medium High High Medium Medium Very high 

Multi-loop N Y Y P N Y 

Maximum frequency NA NA 300 MHz NA NA 400 MHz 

Fault information Y Y N N N Y Diagnostic 
scheme Efficiency Medium Medium NA NA NA High 

Linear instruction set size (bit) 9 Instruction set 
architecture Nonlinear instruction set size (bit) 

9 8 9 4 NA 
14 

Instruction bits of March Y (bit) 90 120 72 68 NA 54 

Instruction bits of March C+ (bit) 144 216 126 108 NA 90 

Instruction bits of March SS (bit) 216 344 198 140 NA 117 

Instruction bits of March s2PF (bit) NA NA NA 216 NA 81 

Instruction bits of March A2PF (bit) NA NA NA NA NA 99 

Instruction bits of Walking (bit) NA NA 90 NA NA 84 

Materialization 
of test algorithm 

Instruction bits of Galloping (bit) NA NA 108 NA NA 98 

Area overhead (gate) 8.9 K 13.6 K 6.4 K 9.9 K NA 7.9 K 

Y: support, N: not support, P: partially support, NA: not available 

 
about 12.6% of the area overhead. 

Table 4 shows a comparison of the proposed scheme and 
previous programmable BIST schemes in terms of the testable 
memory types, supportable test algorithm, instruction size, and 
the instruction memory requirements. In Table 4, March C+ is 
used for the single-port memory test, whereas March s2PF is 
employed for the dual-port memory test. The hardware areas of 
the proposed scheme and of the previous architectures are also 
displayed in Table 4.  

The architectures in [12] and [13] can support March and 
non-March algorithms; however, the scheme in [12] cannot 
encode all non-March algorithms since multi-loop is not 
supported. The scheme in [13] can support multi-loop 
performance, but the hardware area is too large. The 
architecture in [14] supports both March and some non-March 
algorithms. The scheme in [14], which supports the Galloping  

 
algorithm, requires 108 bits of instruction memory. It also 
supports multi-loop performance and reduces the area 
overhead. The schemes in [12] and [13] include diagnostic 
logic with gate counts of 0.3 K and 1.2 K, respectively. 
However, the diagnostic logic supports only the failing 
memory address and the fail-map data as fault information, and 
thus an accurate fault analysis is not possible. Also, the 
PMBIST schemes in [12]-[14] can only test single-port 
memory, not dual-port memory.  

The architectures in [15] and [16] can encode all March 
algorithms and portions of the dual-port memory test 
algorithms. The schemes of [15] and [16] cannot encode the 
A2PF algorithm and can only access the same cell through two 
different ports. Therefore, it is not possible to detect all faults in 
dual-port memory. In addition, non-March algorithms for 
single-port memory cannot be programmed; thus, the fault 
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coverage is constrained.  
The proposed FPMBIST can encode all March and non-

March algorithms for both single-port memory and dual-port 
memory. In addition, since multi-loop performance is 
supported, complex algorithms can be efficiently programmed. 
To encode the March C+ (14N), March s2PF (16N), and 
Galloping algorithms, 90-bit, 81-bit, and 98-bit instruction 
memory is required, respectively, through the linear and 
nonlinear instruction sets. The nonlinear instruction set (14 bits) 
has five more bits than the instruction set (9 bits) proposed in 
[14]. However, it uses 10 fewer bits to implement the 
Galloping algorithm. Furthermore, it can effectively implement 
diverse non-March algorithms and it can support data retention 
tests and so on. As a result, the memory sizes are considerably 
smaller than those in previous PMBIST schemes. The 
implementation results reveal that the hardware area of the 
proposed scheme is the smallest. The proposed FPMBIST can 
test both single-port memory and dual-port memory and can 
support various test algorithms in a small hardware area. In 
addition, since memory of the same port type can be grouped 
into one BIST test domain with the proposed FPMBIST 
scheme, various embedded memory cores can easily be tested 
with relatively smaller area overhead and shorter test 
application times. Furthermore, the FPMBIST has an efficient 
diagnostic module that supports the bypass, FID, and FIR 
methods for repair and diagnosis. The diagnostic module 
improves memory yield by effectively supporting diverse 
diagnostic data to the external ATE. 

V. Conclusion 

A new microcode-based flexible programmable BIST 
scheme was proposed to encode various algorithms for 
memory of different port types. The linear and nonlinear 
instruction sets were also developed to support all March-
based algorithms, dual-port memory test algorithms, and non-
March-based algorithms for both single-port memory and 
dual-port memory. In addition, the FPMBIST supports the 
data retention test. Due to the efficient address generator 
architectures and the use of diverse address generation 
methods (fast diagonal, fast row, and fast column), the 
instruction sets can reduce the instruction memory 
requirement and reduce the BIST hardware area. The 
diagnostic module improves memory yield by effectively 
supporting diverse fault information for repair and diagnosis. 
According to the experiment results, the proposed FPMBIST 
scheme can ensure more flexible programmability for various 
test algorithms and a smaller instruction memory requirement 
and is able to support memory of diverse port types in a small 
hardware area. 
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