Computer Networks 56 (2012) 231-243

Contents lists available at SciVerse ScienceDirect

2 |

Mputer
Computer Networks L".-:.»if}rks

journal homepage: www.elsevier.com/locate/comnet

An efficient IP address lookup algorithm based on a small balanced tree

using entry reduction

Hyuntae Park, Hyejeong Hong, Sungho Kang *

Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history:

Received 23 July 2010

Received in revised form 29 June 2011
Accepted 5 September 2011

Available online 13 September 2011

Keywords:

IP address lookup
Balanced binary search
Multi-way search
Entry reduction

* Corresponding author. Tel.: +82 2 2123 2775; fax: +82 2 313 8053.

E-mail address: shkang@yonsei.ac.kr (S. Kang).

Due to a tremendous increase in internet traffic, backbone routers must have the capability
to forward massive incoming packets at several gigabits per second. IP address lookup is
one of the most challenging tasks for high-speed packet forwarding. Some high-end routers
have been implemented with hardware parallelism using ternary content addressable
memory (TCAM). However, TCAM is much more expensive in terms of circuit complexity
as well as power consumption. Therefore, efficient algorithmic solutions are essentially
required to be implemented using network processors as low cost solutions.

Among the state-of-the-art algorithms for IP address lookup, a binary search based on a
balanced tree is effective in providing a low-cost solution. In order to construct a balanced
search tree, the prefixes with the nesting relationship should be converted into completely
disjointed prefixes. A leaf-pushing technique is very useful to eliminate the nesting rela-
tionship among prefixes [V. Srinivasan, G. Varghese, Fast address lookups using controlled
prefix expansion, ACM Transactions on Computer Systems 17 (1) (1999) 1-40]. However, it
creates duplicate prefixes, thus expanding the search tree.

This paper proposes an efficient IP address lookup algorithm based on a small balanced
tree using entry reduction. The leaf-pushing technique is used for creating the completely
disjointed entries. In the leaf-pushed prefixes, there are numerous pairs of adjacent pre-
fixes with similarities in prefix strings and output ports. The number of entries can be sig-
nificantly reduced by the use of a new entry reduction method which merges pairs with
these similar prefixes. After sorting the reduced disjointed entries, a small balanced tree
is constructed with a very small node size. Based on this small balanced tree, a native bin-
ary search can be effectively used in address lookup issue. In addition, we propose a new
multi-way search algorithm to improve a binary search for IPv4 address lookup. As a result,
the proposed algorithms offer excellent lookup performance along with reduced memory
requirements. Besides, these provide good scalability for large amounts of routing data
and for the address migration toward IPv6. Using both various IPv4 and IPv6 routing data,
the performance evaluation results demonstrate that the proposed algorithms have better
performance in terms of lookup speed, memory requirement and scalability for the growth
of entries and IPv6, as compared with other algorithms based on a binary search.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The deployment of optical fibers as a transmission med-
ia provides a broad bandwidth for internet systems. The
optical transmission technologies, such as the dense wave
division multiplexing (DWDM), can accommodate several

1389-1286/$ - see front matter © 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2011.09.004

http://dx.doi.org/10.1016/j.comnet.2011.09.004
mailto:shkang@yonsei.ac.kr
http://dx.doi.org/10.1016/j.comnet.2011.09.004
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

232 H. Park et al./ Computer Networks 56 (2012) 231-243

hundred channels, transmitting data at several gigabits per
second such as OC-192(10 Gbps) and OC-768(40 Gbps).
Backbone routers must have the capability to forward mas-
sive incoming packets at this high link speed, even as the
packet arrival rates and forwarding table sizes are dramat-
ically increasing. If the processing speed for packet for-
warding is less than the link speed, the packet
forwarding operations become a major bottleneck which
obstructs the fast transmission of the data [1]; the IP ad-
dress lookup is one of the most challenging tasks among
the packet forwarding operations.

In order to aggregate IP addresses in the same network,
an IP address consists of two parts: a network part and a
host part. The network part, called the prefix, identifies
the network to which hosts are attached. The IP address
lookup determines the output port of the incoming packets
by looking up the prefix of the destination IP address on
the packets in the forwarding table. In the classful address-
ing scheme, only three different sizes of networks were al-
lowed; their prefix lengths fixed at 8, 16 and 24 bits in
IPv4. Accordingly, IP address lookup was very easy, using
a standard exact search method such as a native binary
search. However, because only a small fraction of the allo-
cated addresses were actually in use, the address space
was used inefficiently and rapidly exhausted. In order to
avoid wasting address space, classless inter-domain rout-
ing (CIDR) was deployed. CIDR allows for arbitrary aggre-
gation of IP addresses so that the prefix has variable
lengths from 8 to 32 bits in [Pv4 and from 12 to 64, includ-
ing 128, in IPv6. Therefore, prefixes have a nesting relation-
ship dependent on the hierarchy of the networks. When a
prefix is a sub-string of another prefix, the shorter (ances-
tor) prefix encloses the longer (descendent) prefix. As a re-
sult, since there are multiple matching results with
different lengths, IP address lookup can no longer be per-
formed by the standard exact search methods thereby
complicating this task which must now find the longest
matching prefix (LMP) among multiple matching prefixes
[2]. Furthermore, as the long term solution for insufficient
address resource, the migration of the address scheme
from IPv4 to IPv6 is in progress. It also makes the address
lookup becomes complicated because the address lengths
of IPv6 is expanded to 128 bits. Even existing IP address
schemes, which have excellent performance for IPv4, can
hardly be competent for IPv6.

IP address lookup in high-performance routers have
been implemented with hardware parallelism using spe-
cialized memories called ternary content addressable
memory (TCAM). With TCAM, an address lookup can be
performed with a single memory access for high-speed
packet forwarding [3]. Despite this advantage, the use of
TCAMs is prohibitive by the following three disadvantages:
(1) low TCAM utilization and updating issues due to sort-
ing entries, (2) high power consumption due to the parallel
execution of TCAM entries, and (3) high TCAM manufactur-
ing cost due to low chip density.

In respect of (1) updating issue, because the priority en-
coder logic selects the entry at a lowest physical memory
address for a longest prefix matching issue, entries should
be stored in decreasing order of prefix lengths in TCAMs.
Under internet instability, this need to keep a sorted list

of entries in TCAMs makes updates slow so that this updat-
ing issue becomes the main bottleneck of using TCAMs. Be-
sides, since the arrangement of the empty space is crucial
to speeding up TCAM updating, the TCAM utilization is de-
graded. In respect of (2) power consumption issue, the high
density TCAMs consume power up to 12-15W per chip
when the entire memory is enabled. In order to support
increasing entries for IP address lookup, vendors use four
to eight such TCAM chips. The power consumption by a
large number of chips causes the increase of the cooling
cost and the limitation of the router design to fewer ports
[3]. In addition, the growth of the entries in TCAM in-
creases linearly with the power consumption. In respect
of (3) TCAM manufacturing cost issue, one bit in a TCAM
requires 10-12 transistors, while that in an SRAM requires
4-6 transistors. Thus, TCAMs is less dense than SRAMs, and
the TCAM manufacturing cost is very high. As a result, the
current solution for IP address lookup using TCAM is still
confronted by the cost problems, and has a scalability issue
toward IPv6 in the future network. According to Varghese
[4], CAM technology is rapidly improving and is supplant-
ing algorithmic methods in smaller routers. However, for
large core routers that may have routing databases of a
million routes in the future, it may be better to have solu-
tions that scale with ordinary memory technologies such
as SRAM and DRAM. In addition, the customers are asking
for performing the newly various functions. In order to
support various packet functions, the packet engines for
IP address lookup are implemented using network proces-
sors in the recent routers. Thus, software-based address
lookup algorithms are well worth developing.

Several metrics are considered in evaluating the perfor-
mance of the software-based IP address lookup algorithm.
First, the lookup speed is the most crucial metric. The cost
of computation in the lookup process is dictated by the
number of memory accesses [4]. Therefore, the lookup
speed can be evaluated by the average and the worst-case
numbers of memory accesses. In the case of a tree based
lookup algorithm, the worst-case number of memory
accesses depends on the maximum depth of a tree. Second,
the memory requirement is an important metric. Cur-
rently, a forwarding table should accommodate several
hundred thousand entries. Thus, the node size for each en-
try and the total number of entries should be kept to a
minimum, and the pre-computation results should not be
stored in each node. Third, an efficient updating mecha-
nism is also important since route changes can occur up
to 100 times per second in the edge routers [5]. A compli-
cated updating operation may interfere with the lookup
operation and degrade the search performance. Thus,
incremental updating should be supported. Finally, scala-
bility is another important metric. Algorithms should eas-
ily accommodate a rapid growth of entries in the
forwarding table, and have good scalability toward IPv6.

Many software-based IP address lookup algorithms
have been developed in recent years, in consideration of
the above metrics. A binary trie provides an easy way to
handle prefixes with arbitrary lengths [1]. However, the
binary trie includes many empty internal nodes, resulting
in a decrease in the search speed and wasted memory
space. In the sense that binary search algorithms based

H. Park et al./ Computer Networks 56 (2012) 231-243 233

on prefix values involve no internal empty nodes, these
algorithms have attracted the attention of researchers.
However, due to the nesting relationship among prefixes,
the ancestor (shorter) prefix must be searched for prior
to the search for the descendent (longer) prefix. Hence, a
binary search tree cannot be constructed merely by sorting
prefixes and a native binary search cannot be directly ap-
plied. Furthermore, even if a match occurs in the middle
of a tree, a search should continue to a leaf because another
longer prefix may exist. These limitations make the binary
search tree unbalanced, and hence the lookup speed is de-
creased. In order to overcome these limitations, the leaf-
pushing technique [6] provides an elimination method
for the nesting relationship among the prefixes. Using this
technique in a binary trie, all entries become the com-
pletely disjointed prefixes. A balanced tree for a native bin-
ary search can be constructed simply by sorting these
disjointed entries. However, the leaf-pushing creates an
abundance of duplicated prefixes. The growth of entries
in the forwarding table leads to longer lookup time as well
as larger memory requirements. Therefore, this is a critical
issue with the algorithms using leaf-pushing.

This paper proposes an efficient IP address lookup algo-
rithm based on a small balanced tree using entry reduction.
The leaf-pushing is used for constructing the balanced tree.
Then, the search tree is minimized by the use of a new entry
reduction method. In the leaf-pushed prefixes, there are a
large number of pairs of adjacent prefixes which are similar
in prefix strings and output ports. The entry reduction meth-
od merges these prefix pairs into a single prefix. Accord-
ingly, the number of entries is significantly reduced and a
small balanced tree can be constructed. Thus, a native binary
search can be effectively used in both IPv4 and IPv6 address
lookup. As well, a new multi-way search algorithm is pro-
posed to improve a binary search for IPv4 address lookup.
As a result, the proposed algorithms offer excellent lookup
performance along with reduced memory requirements.
Besides, the proposed algorithms provide good scalability
for large amounts of routing data and for the address migra-
tion toward IPv6.

The rest of this paper is organized as follows. Section 2
describes previous IP address lookup algorithms using a
binary search. Section 3 presents the proposed IP address
lookup algorithms. Section 4 discusses the performance
evaluation results using various IPv4 and IPv6 routing data,
as compared to other algorithms, and Section 5 provides
the conclusions.

2. Previous works
2.1. Binary search algorithms based on a trie

A binary trie provides a natural way in which to find the
longest matching prefix [1]. This is a tree-based structure
which executes a linear search based on the prefix length.
Each prefix is associated with a node defined by the path
from the root. The search proceeds to the left or the right
by a sequential bit-by-bit inspection, starting with the
most significant bit. Fig. 1 shows the binary trie for the
example set of prefixes presented in Table 1. The gray
nodes represent the prefixes, and P; denotes that the out-
put port of the prefix P, is 0. Otherwise, the white nodes
represent the empty internal nodes. The binary trie struc-
ture is simple, as well as easy to implement and update.
It provides good scalability for the growth of entries in
the forwarding table. However, since many empty internal
nodes are required, as shown in Fig. 1, much memory space
is wasted. Besides, the depth of the trie is the maximum
prefix length which results in a slow lookup speed.

In order to avoid the limitation by empty internal nodes
in a trie, the multi-bit trie and the path compression meth-
ods have been suggested. In the multi-bit trie structure [7],
more than one bit at a time is inspected. In the level-com-
pressed trie (LC-trie) [8], the multi-bit trie is applied along
with path compression. But, using a node array to store the
LC-trie makes incremental updates very difficult. Some ap-
proaches have been proposed a data structure that can rep-
resent large forwarding tables in a compact form by
compressing the multi-bit trie to fit into processor’s cache.
Lulea algorithm [9] has been suggested using the bitmap
compression in the leaf-pushed multi-bit trie. This can re-
duce the number of elements in a trie and save memory
requirements. However, it requires two memory accesses
per node during the search procedure, and it is almost
impossible to perform incremental updates because of its
tight coupling property. In most cases, the whole table
may need to be completely rebuilt for updating. In addi-
tion, its dedicated memory organization is also un-scalable
for large forwarding tables and IPv6. Tree bitmap algo-
rithm [10] has been proposed based on multi-bit expanded
tries without any leaf pushing and the bitmaps to com-
press wasted storage in trie nodes. This requires single
memory access per node during the search, and has faster
update time than the Lulea algorithm. However, since
there are two bitmaps per node to avoid the leaf pushing,

Fig. 1. Binary trie.

234 H. Park et al./ Computer Networks 56 (2012) 231-243

Table 1
Example set of prefixes.

Prefix Output-port Prefix Output-port
P, 0000 1 P1o 10 0
P, 000 0 Py 1010 1
Ps 00010 2 Pi, 101101 2
Py 0010 0 P13 10111 1
Ps 0011 0 P14 110 1
Pg 010 0 Pis 1101 2
P; 01100 1 Pis 11 2
Pg 011 1 Py7 1110 2
Py 1001 0 Pig 11111 2

it makes update inherently slow as in the Lulea algorithm.
In some cases, the updating makes an excessive number of
memory accesses. It is caused by the fact that the children
of a node and the output-ports array of the forwarding
information are allocated and stored in contiguous mem-
ory blocks. It requires more than 3000 memory accesses
each for insertion or deletion operations in the worst case
[11].

As solutions for eliminating the empty internal nodes in
a trie, the longest prefix first search has been presented. In
a priority trie (P-Trie) [12], the empty internal nodes of a
trie are replaced by the longest prefix among the descen-
dent prefixes whose are belonged to a sub-tree rooted by
the empty node. Similarly, in a longest prefix first search
tree (LPFST) [13], when the first sub-string bits of a prefix
are equal to the value of a node associated with its position
in a trie, the prefix is allocated to the corresponding node.
Accordingly, the longer prefix is always located on the
upper node. If the entire string of a prefix has the same va-
lue as a node associated with a position in the trie, this pre-
fix overlaps with the previously allocated prefix. Both
methods are able to eliminate the empty internal nodes
in a trie and search for a longer prefix in decreasing order
of prefix lengths. However, in order to continually allocate
the longer prefix on the upper node in a trie structure,
recursive exchanges and movements of nodes are required
for the building and updating procedure.

2.2. Binary search algorithms based on prefix values

Considering that a binary search algorithm based on
prefix values includes no empty internal nodes, it is a bet-
ter approach than the binary trie. But, the sorting method
of prefixes with various lengths is required. In a binary pre-
fix tree (BPT) [14], the binary search scheme using a com-
parison method for sorting prefixes with different lengths
has been suggested. For two prefixes of different lengths,
the magnitude is decided by comparing the first m bits of
the two prefixes, where m is the length of the shorter pre-
fix. If the first m bits of the two prefixes are the same, then
the (m + 1)th bit of the longer prefix is observed. If this bit
is 1, the longer prefix is larger, otherwise the shorter prefix
is larger. However, due to the nesting relationship among
prefixes, the BPT cannot be constructed by simply sorting
the entries. Among prefixes with the nesting relationship,
the ancestor (shorter) prefix should be allocated on the
upper node than the descendent (longer) prefix in a tree.
This can result in an unbalanced tree with a deep depth.
In order to construct more balanced BPT, the weighted pre-

fix tree (WPT) [15] considers the number of the descendent
prefixes while selecting the root of each level. However,
the WPT is also limited by the necessity of searching for
ancestors prior to descendents. In order to overcome this
limitation, it is necessary to completely eliminate the nest-
ing relationship among the prefixes.

If all of the entries are completely disjointed by elimi-
nating the nesting relationship, a binary search tree for IP
address lookup can be perfectly balanced, thus allowing
the application of a native binary search. The depth of a
perfectly balanced tree can be bound to O(logN), where N
is the number of entries. Thus, an optimum lookup speed
can be achieved, dependent only on the number of entries.
Besides, the left and the right pointers on each node for a
binary search are not required, thus saving memory space.

Several algorithms have been presented in the sense
that a binary search tree composed of completely dis-
jointed entries is perfectly balanced. In IP packet forward-
ing based on partitioned lookup table (IFPLUT) [16], a
partitioning technique of multiple tables has been sug-
gested for creating a set of disjointed prefixes. Using the
fact that prefixes with the same output port are mutually
disjointed, all entries are partitioned according to their
output port. However, since this scheme is parallel pro-
cessed in multiple tables, additional hardware is required
so that it is unsuitable for software implementation. For
the multi-way binary prefix tree (MBPT) [17], a forwarding
table is divided into multiple trees, each consisting of a
subset of each ancestor prefix based on different prefix lev-
els. Multiple trees have a hierarchical structure and each
tree becomes balanced. However, because a hierarchical
binary search is performed in multiple stages, the search
path on multiple trees is longer than that on a single tree.
In a binary search scheme based on search space reduction
(SSR) [18], in order to reduce the search path, a forwarding
table is partitioned into two-level tables according to the
nesting relationship. Although the search path of this algo-
rithm is smaller than that of the MBPT, the search path re-
mains long. In the algorithm using prefix vectors (PV) [19],
the binary search tree is constructed with the prefixes only
on the leaves of the binary trie. Since the prefixes on leaves
are disjointed, the tree is perfectly balanced. However,
each entry contains the forwarding information of the cor-
responding ancestor prefixes as prefix vectors. Thus, each
node requires much memory space for storing the prefix
vectors. Especially, the node size in IPv6 is impractical so
that scalability to IPv6 is very poor.

In other methods which eliminate the nesting relation-
ship, the prefixes are represented as ranges [20-22]. The IP
address lookup issue for the prefixes is transformed into a
binary search for range. The range of each prefix consists of
start points and end points which are padded with zeros
and ones to a maximum length. Ranges are divided by dis-
jointed intervals, and the best matching prefix (BMP) for
each interval is pre-computed and stored. As a result, the
native binary search can be applied to disjointed interval
entries. However, since the start points and end points of
a range are stored in the forwarding table, the number of
entries might be twice the number of the actual prefixes
in the worst case. Besides, an incremental update is impos-
sible due to the pre-computation of the BMP for each entry.

H. Park et al. / Computer Networks 56 (2012) 231-243 235

0p 2
Pio.2” P12

Fig. 2. Leaf-pushing binary trie.

The leaf-pushing technique has been presented as an-
other method for eliminating the nesting relationship [6].
This technique removes ancestor prefixes in the internal
nodes and generates new prefixes by pushing the removed
prefix down to the leaves in a binary trie. For an example
set of prefixes in Table 1, the ancestor prefixes are P,, Pg,
P10, P14 and Pyg. These prefixes are pushed down to their
leaves in the trie with their output ports. Fig. 2 shows
the leaf-pushing binary trie for the binary trie of Fig. 1.
The gray nodes represent the original prefixes, and the bol-
ded nodes represent the pushed prefixes. As shown, all of
the entries are located at the leaves in a trie and thus be-
come disjointed. In a disjointed prefix tree (DPT) [23], a
balanced binary search tree is constructed by sorting these
disjointed entries using the comparison method in the BPT.
The search path of the DPT is shorter than that of the algo-
rithms based on multiple trees such as the MBPT and the
SSR. Besides, pre-computation is not required, contrary to
the binary search algorithms for ranges. Nevertheless, a
critical problem arises due to the significant number of in-
creased entries resulting from using leaf-pushing. As
shown in Fig. 2, multiple pushed prefixes are produced
from a single ancestor prefix such as Pg and Pjo. In [24],
in an attempt to reduce the number of duplicated prefixes
which were increased by the use of leaf-pushing, adjacent
prefixes with the same output port are merged. However,
since this merge operation is restricted according to the
output ports of the prefixes, the large number of entries
cannot be reduced.

3. Proposed algorithm

The leaf-pushing technique is initially used to create the
completely disjointed. As mentioned earlier, this technique
increases a number of entries. We have investigated the
leaf-pushed prefixes and identified that there are a large
number of pairs of adjacent prefixes which are similar in
prefix strings and output ports; therefore, these similar
prefix pairs are merged into the single common prefix to
reduce the number of entries. By means of sorting these re-
duced entries, a small balanced binary search tree can be
efficiently constructed without any complicated building
process. In addition, in order to improve a binary search
for IPv4 address lookup, a new multi-way search algorithm
is proposed. Because these search trees are perfectly bal-
anced, the lookup operation of the proposed algorithm is
quickly accomplished. Furthermore, the proposed algo-

rithm can provide incremental updating and the scalability
for the growth of entries and IPv6.

3.1. Entry reduction method

WEe first define the notation for the prefix as follows. Let
p ={P1,P>,...,Py} be the set of prefixes, where N is the num-
ber of prefixes. Let the bit string of a prefix be P, =b4,...,b;
where [is the length and by is either O or 1. Let by be the
kth bit of prefix P,. Let L(Py) and O(Py) be the length and
the output ports of the prefix P,, respectively.

Definition 1 (Prefix type). According to the number for the
forwarding information of a prefix, if the prefix has a single
output port, the prefix type is defined as ordinary.
Otherwise, if the prefix has dual output ports, the prefix
type is defined as merger.

Definition 2 (Twin prefix). For two ordinary prefixes P4
and P, P, is defined as the twin prefix of Pg and vice versa,
if, and only if, the length of the two prefixes is the same,
and the last significant 1 bit of two prefixes is only the dif-
ferent and the rest bits of them are the same. P, = Pg rep-
resents the twin prefixes P4 and P, therefore,

Py =P iff L(PA) = L(PB) =1 and bAJ = bBJ, . ,bAJ,]
=bpi1, bas# bg.

Definition 3 (Uniform prefix). For two ordinary prefixes P,
and Pg, P4 is defined as the uniform prefix of Pz and vice
versa, if, and only if, the two prefixes are mutual twin pre-
fixes and the output ports of the two prefixes are the same.
P,=Pg represents the uniform prefixes P, and P;,
therefore,

Py =Pp iff Py =P and O(PA):O(PB)

Definition 4 (Parent of twin prefixes). For the twin prefixes
P4 and Pg, Pc is defined as the parent of the twin prefixes P4
and Pg, if, and only if, the length of prefix Pc is smaller than
that of the twin prefixes by one bit and the bit string of P¢
is equal to the sub-string of the twin prefixes; Pc is the par-
ent of the twin prefixes P4 and Pp iff L(P4)=L(Pg)=1,
L(Pc)=1-1 and ba;=bg1=bca,....,bar1=bpi_1=bci_1,
bai# bg,.

236 H. Park et al./ Computer Networks 56 (2012) 231-243

0 0
Pe Ps
1 1 1
P8-2 PM1 P8-2
P7' Pg.4'
(a) before merging (b) after first merging
e
0,1
P20
1
Ps’ P2
(c) after second merging (d) after final merging

Fig. 3. Example of performing the proposed entry reduction method.

The proposed entry reduction method performs merg-
ing the twin prefixes into their parent in the leaf-pushing
binary trie as follows. For the twin prefixes P4 and Pg, let
the last significant 1 bit of P, be 0 and that of Py be 1;
ba;=0 and bg; =1, when I = L(P,) = L(Pg). The string of the
merged prefix Py, which is the parent, is the common bit
string of the twin prefixes P4 and Pg; Py; = b1b;,...,b;_1. The
length of the merged prefix is less than that of the twin
prefixes by one bit; L(Py;) = | — 1. The merged prefix type is
determined according to the output ports of the twin
prefixes. If the two prefixes are uniform prefixes, according
to Definition 3, then the forwarding information of P, is
the output port of the twin prefixes and the merged prefix
is an ordinary prefix type. Otherwise, if the two prefixes
are not uniform prefixes, the forwarding information of Py,
are both output ports of the twin prefixes and the merged
prefix is a merger prefix type. This merge operation is
repeatedly performed until there are no remaining twin
prefixes in the leaf-pushing trie.

Fig. 3 illustrates the reduction of entries using the
proposed entry reduction method, where P denotes the
output port o of the prefix P,. In Fig. 3(a) as a subset of
Fig. 2, P} and P} _, are uniform prefixes. These prefixes are
merged into P,l\,,l as shown in Fig. 3(b) and this merged
prefix is an ordinary prefix type. Then, P},; and P} , are
also uniform prefixes and are merged into P,lv,2 in Fig. 3(c).
Finally, Pg and P}, are twin prefixes, not uniform prefixes,
therefore these prefixes are merged into ng as a merger

Fig. 5. Proposed balanced binary search tree.

prefix type. Fig. 4 shows the reduced leaf-pushing trie with
a small number of entries using the proposed entry
reduction method from the leaf-pushing trie of Fig. 2. As
shown, the number of entries can be reduced by more than
just the number of twin and uniform prefixes. In this
example, we confirm that the number of entries in Fig. 4
can be reduced by half, as compared with the original leaf-
pushing trie shown in Fig. 2.

3.2. Building

Building the binary search tree in the proposed algo-
rithm comprises the following three steps: (1) in a binary
trie, the leaf-pushing technique is used to transform the
prefixes with the nesting relationship into completely dis-
jointed prefixes. (2) The proposed entry reduction method
by merging is repeatedly performed until there are no
other twin prefixes in the leaf-pushing trie. (3) After the
merge operation, the entries are sorted in ascending order
using the comparison method in the BPT. This sorted list
becomes both the small balanced tree and the forwarding
table for a native binary search.

Fig. 5 shows the proposed balanced binary search tree
created by sorting entries from the reduced leaf-pushing
trie of Fig. 4. The black nodes represent the merger type
prefixes, and the gray nodes represent the ordinary type
prefixes. This tree is perfectly balanced and has an opti-
mum depth. Fig. 6 illustrates the entry structure for the
proposed binary search tree. The node is composed of the
prefix type, the prefix string, the prefix length, and the
two output-port fields. The value of the type field repre-
sents whether the prefix type is ordinary or merger. Every
node is either a type 0 or a type 1. For ordinary type pre-

2 1
P23 P43

Fig. 4. Reduced leaf-pushing trie using the proposed entry reduction method.

H. Park et al./ Computer Networks 56 (2012) 231-243 237

| | | | |
e bits-e— 32 0r 128 bit —#-<¢5 or 7 bits'«— 6bit —»-e— 6bit —»!

type prefix

length

twin-0 twin-1
output-port | output-port

Fig. 6. Entry structure for the proposed binary search tree.

fixes, the type 0 node includes only one output port in the
twin-0 output-port field. Otherwise, for merger type pre-
fixes, the type 1 node includes two output ports of twin
prefixes in the twin-0 and the twin-1 output-port fields.
Prefix strings and their associated lengths are stored in
the second and third fields, respectively. The width of the
prefix field is 32 bits for IPv4 or 128 bits for IPv6. Accord-
ingly, the width of the length field is 5 bits in IPv4 or 7 bits
in IPv6. Because the proposed binary search tree is per-
fectly balanced, the left and right pointers are not required
for a binary search. This yields a very simple entry struc-
ture which results in reduced memory requirements for
the small node size. For the proposed binary search tree
in Fig. 5, its associated forwarding table is shown in Table
2. This table can be constructed by the sorted entries itself
without any building operation.

3.3. Searching

Searching in the proposed binary search algorithm is
performed by a native binary search. Let the input A be
the destination IP address of an incoming packet and
S(A,k) be a sub-string of the most significant k bits of A.
Let P, be the prefix stored at node x. Accordingly, A is de-
fined to match Py if S(A,L(Py)) = Px. Let T(Py) be the prefix
type for P,, and O* represent the output port of the
matched prefix as the final search result. The pseudo code
for the search procedure is shown in Fig. 7.

In code lines 2-3, the search result O* and a node x are
initialized. When there is no matching prefix in the for-
warding table, the incoming packet is forwarded to a de-
fault output port. Hence, O* is set to the default output
port. Node x is set to the root. The root in the binary search
tree is the entry at the index N/2, where N is the total num-
ber of entries in the forwarding table. In code lines 5-12, if
the input A matches the prefix P, at node x, the output port
is determined according to the matched prefix type. If the
prefix type is ordinary (0), the twin-0 output-port is as-
signed to O*. On the other hand, if the prefix type is merger

Table 2
Forwarding table of the proposed binary search tree.

1 Search (IP Address A)

2 O% <« default output-port;
3 X « root;

4 do

5 if (S(A4, L(Px))=Px)
6 if (T(Px)=0)

7 O% «— Og(Py); break;

8 else

9 if (byrpy<1=0)
10 O% «— Oy(Py). break:
11 else

12 O% «— Oy(Py): break:
13 else

14 if(4d < P,)
15 xy 1s the left child node of x
16 else

17 xn is the right child node of x
18 X < XN

19 while (x is a valid node)

20 return O%

Fig. 7. Pseudo code for the search procedure.

(1), the (L(Py) + 1)th bit of input A is checked. If that bit is 0,
the twin-0 output-port is assigned to O*. Otherwise, the
twin-1 output-port is assigned to O*. Since all of the entries
are disjointed, the search result is unique. Therefore, if
there is the matched prefix, the search is immediately
completed and the output port of the matched prefix is re-
turned at code line 20. In code lines 14-18, if input A does
not match the prefix, the binary search is continued. If the
input is smaller than the prefix at the present node, the
next node is the medium entry of the smaller half, which
is the left child node. Otherwise, the next node is the med-
ium entry of the bigger half, which is the right child node.
This is continued until there are no more valid nodes.
Based on the forwarding table, shown in Table 2, of an
example of the incoming address, 000110* the input is

Index Type Prefix Length Twin-0 output-port Twin-1 output-port
0 0000 4 1 -
1 1 0001 4 0 1
2 0 001 3 0 -
3 1 01 2 0 1
4 0 100 3 0 -
5 0 1010 4 1 -
6 1 10110 5 0 2
7 0 10111 5 1 -
8 1 110 3 1 2
9 0 111 3 2 -

238 H. Park et al./ Computer Networks 56 (2012) 231-243

first compared with the prefix 1010 at index 5 in the root
node. The input does not match so the magnitude of the in-
put is compared with that of the prefix at the node. Since
the input is smaller than the prefix 1010, the next compar-
ison is performed at index 2. Again, it does not match and
is smaller than the prefix 001. Next, the input is matched
with the prefix 0001 at index 1. Because the matched pre-
fix type is merger, the next bit in the input is checked. This
bit is 1 which is the fifth bit of the input. Therefore, the
search result is decided by 1 in the twin-1 output-port field
at index 1 and the search is immediately completed. In an-
other example of an incoming address of 10111%, the input
is compared with the prefixes at indices 5, 8 and 7 sequen-
tially. At index 7, since the input matches the prefix as an
ordinary type, the search result is set to 1 in the twin-0
output-port field and the search is completed.

3.4. Updating

The proposed algorithm supports incremental updating.
The prefix insertion operation depends on three factors:
the matched prefix with the input, the output ports of
the input and the matched prefix, and the matched prefix
type. In order to find the appropriate position for a prefix
insertion, a prefix matching the input prefix should be
searched for using the proposed search process. If there
are no matched prefixes in the proposed tree, the input
prefix is inserted at a new leaf node. Otherwise, if there
is a matched prefix, the output ports of the input and the
matched prefix are inspected. When the output ports of
both prefixes are the same, the matched prefix implies
the input prefix; therefore, an input prefix insertion is
not required. However, if the output ports of both prefixes
are different, the node itself, as well as the child nodes of
the matched prefix, may be affected by the insertion of
the input prefix. For this case, according to the type of
the matched prefix and the parent relationship with the
matched prefix and the input prefix, there are three cases
for which the tree is modified.

The first and the second cases are when the matched
prefix type is ordinary. The first case is when the matched
prefix is the parent prefix of the input prefix. The matched
prefix type is transformed into a merger. Then, the output
port of the input prefix is stored in the corresponding out-
put port field and the existing output port of the matched
prefix is stored into another output port field. For example,
when the new input prefix 1000 with an output port 1 is
inserted into the proposed tree of Fig. 5, the input prefix
is matched with the ordinary prefix 100, P3,. Since the
matched prefix PJ, is the parent of the input, this is trans-
formed into a merger prefix. In this case, the output port of
the matched prefix is moved to the twin-1 output-port
field and the output port of the input is stored into the
twin-0 output-port field. Therefore, the new merged prefix
100 is P,

The second case is when the matched prefix is not the
parent prefix of the input prefix. The matched prefix
should be leaf-pushed and the new leaf-pushed prefixes
are re-merged, if necessary. These prefixes are then reallo-
cated in ascending order. For example, for the input prefix
00110 with output port 1, as shown in Fig. 5, the input is

matched with the prefix 001. Because the matched prefix
001 is not the parent of the input, the prefix 001 is leaf-
pushed. Hence, the new leaf-pushed prefixes are 0010
and 00111 with the original output port 0. Then, since
the new prefix 00111 and the input 00110 are twin pre-
fixes, these prefixes are re-merged into the prefix 0011
with the output port 1 in twin-0 and the output port O in
twin-1. Therefore, the new entries are the ordinary prefix
0010, P, and the merger prefix 0011, P,?. For reallocation,
the prefix P3? is located at node P3, and the prefix P is lo-
cated at the new right leaf node Pﬁ’g. Fig. 8 shows the up-
dated tree for this insertion case. This prefix insertion
affects only two entries.

The third case is when the matched prefix type is mer-
ger. Since the matched prefix implies twin prefixes, the
prefixes of the matched prefix are first separated. One of
the separated prefixes is the ancestor prefix of the input.
This prefix is leaf-pushed and the other prefix becomes
an ordinary prefix. As in the second case, if necessary, the
new leaf-pushed prefixes may be re-merged and reallo-
cated in ascending order. For example, for the input prefix
0110 with output port 2, the input is matched with the
merger prefix 01, PY;'. The matched prefix is separated into
two ordinary prefixes 010 and 011. The prefix 011 is leaf-
pushed to the prefix 0111. Then, the input prefix 0110
and the leaf-pushed prefix 0111 can be re-merged. There-
fore, the new prefixes are the ordinary prefix 010, PJ; and
the merger prefix 011, P§7‘ For sorting in ascending order,
the prefixes P3,, PY; and P%' are reallocated in the tree.
Fig. 9 shows the updated tree for this insertion case. This
prefix insertion affects only three entries.

For prefix deletion, the search process is also used to
find a deleted entry. This operation depends on the loca-
tion and the type of the matched prefix. When the matched
prefix type is merger, the corresponding entry, which is the
one of the twin prefixes in a matched prefix, is deleted and
the matched prefix type is changed to ordinary. Otherwise,
when the matched prefix type is ordinary, the location of
the matched prefix is checked. If there is a matched prefix
on a leaf in the tree, the matched prefix is simply elimi-
nated without any processing. However, if there is a
matched prefix in the middle of the tree, after deleting
the matched prefix, a reallocation of entries is required.

3.5. Scalability to IPv6

The building, the searching and the updating proce-
dures of the proposed algorithm are not affected by longer

0000 0010 01 10110

Fig. 8. Proposed tree updated by inserting the prefix 00110* with the
output port 1.

H. Park et al./ Computer Networks 56 (2012) 231-243 239

6
0000 010

100 10110

Fig. 9. Proposed tree updated by inserting the prefix 0110* with the
output port 2.

prefix length as in IPv6. These operations in IPv6 address
scheme are the same as those in IPv4 address scheme.
Thus, the lookup and the update performance of the pro-
posed algorithm are absolutely not degraded by increasing
address lengths of IPv6. In IPv6, the modification of the
proposed algorithm is uniquely that the widths of the pre-
fix field and the length field are increased in the entry
structure. This is unavoidable cost in all kinds of algo-
rithms which should store prefix values in each node, such
as binary search algorithms based on prefix values and the
longest prefix first search algorithms in a trie. Therefore,
the proposed algorithm has good scalability toward IPv6.
Otherwise, the performance of a trie based algorithms de-
pends on the prefix length so that these algorithms have
poor scalability to IPv6. The detailed review is provided
in [1].

3.6. 4-Way search algorithm

Modern general-purpose CPUs support various kinds of
caches for speeding up the data processing. Recently, a sin-
gle cache line in general-purpose computing devices is
usually more than 30 bytes [19]. Because the node size of
the proposed binary search algorithm in IPv4 is very small,
getting more search information is possible at single mem-

ory access. Inspired by this fact, the multi-way search algo-
rithm is proposed to improve the lookup speed of a binary
search for IPv4. In case of IPv6, since the node size is orig-
inally 148 bits, the multi-way search cannot be applied.

Since the node size of the proposed binary search algo-
rithm in IPv4 is 50 bits, the node of the proposed multi-
way search algorithm can include three entries so that
the 4-way search is possible. Fig. 10 shows the proposed
balanced 4-way search tree from the reduced entries of
Fig. 4. The entry structure of the 4-way search tree is
shown in Fig. 11. For building the binary search tree, the
forwarding table can be constructed by simply sorting
the entries and has no pointers for a search path. On the
other hand, for building the 4-way search tree, the quarter
entry, the middle entry and the three-quarters entry
among the sorted entries are grouped into one node of
the 4-way search tree. In addition, the four pointers are
stored to indicate the next child nodes.

The proposed 4-way search procedure is similar to the
proposed binary search procedure. If there is the matched
prefix among the three entries on each node, the search is
immediately completed and the output port of the
matched prefix is resulted. If the input does not match
the prefixes, the magnitude comparison with three entries
is performed and the corresponding pointer is selected to
progress the next child node. This is continued until there
are no more valid nodes or the matched prefix is found.

In order to keep the perfect balance of the tree, the
updating of the proposed 4-way search tree may be more
complicated than that of the proposed binary search tree.
However, since the leaf nodes of the proposed 4-way
search tree have empty slots, the inserted prefix can be
allocated to empty slots of the leaf nodes. Thus, the incre-
mental update is partially possible.

3.7. Complexity of the proposed algorithms

In both IPv4 and IPv6 networks, the complexity of the
proposed algorithms is the follows. N denotes the number

0
P20

1 1,2
P11 [P2s

1 0,1
P1 |Pio -

0,1 o| _
P21 P22

0,2 1| _
P23 "| P13

Fig. 10. Proposed balanced 4-way search tree.

| | | | | | | |
<18 bit »-'«— 50 0r 224 bit —#-= 18 bit »~'&— 50 or 224 bit —#¢ 18 bit#-e— 50 or 224 bit —»¢ 18 bit »!
| | | | | |

left left_mid
ptr Entry (1) ptr

Entry (2)

right_mid
ptr

right

Entry (3) ptr

f f

Input < Entry1 Entry1 < Input < Entry2

' f

Entry2 < Input < Entry3 Entry3 < Input

Fig. 11. Entry structure for the proposed 4-way search tree.

240 H. Park et al./ Computer Networks 56 (2012) 231-243

of entries of the proposed algorithms, which is reduced by
the proposed entry reduction method. The search com-
plexity of the proposed algorithm is O(log, N) for a binary
search and O(log,N) for a k-way search because the pro-
posed trees are perfectly balanced. The update times of
the proposed algorithms are log; N + o and log,N + o for a
binary and a k-way search, respectively. It takes log, N
and logyN for the search process for the appropriate posi-
tioning of an input prefix insertion or deletion. For a prefix
insertion, « is the time required for leaf-pushing a matched
prefix and the reallocation of the new prefixes. For a prefix
deletion, « is the time required for the reallocation of en-
tries in ascending order. Because time « is affected by a
small number of entries, the update complexity is O(log, N)
for a binary search and O(logiN) for a k-way search. The
memory requirement is determined by multiplying the
node size by the number of entries. Since the small node
size in the proposed algorithm is fixed, the complexity of
memory requirements is O(N).

4. Performance evaluation

The performance evaluation of the proposed algorithms
and other algorithms is simulated by using C language pro-
gramming, based on various IPv4 and IPv6 routing data.
The six IPv4 and the two IPv6 routing data are obtained
from actual backbone routers [25]. IPv6 real-world routing
data is not sufficient for experimental evaluations. Since
IPv6 is in its initiation period, only a small portion of ad-
dress blocks are allocated up to now. Accordingly, the
number of the prefixes in [Pv6 environment is barely about
six thousand, while the number of the prefixes in IPv4
environment is about hundreds of thousands. But, accord-
ing to RFC 2928, 3177, 3578, and 3587, the organization
and the allocation policies of IPv6 addresses have been set-
tled. Thus, the future IPv6 prefix distribution is predictable.
As referred to [26], we generate and use the three IPv6 ran-
dom data, which have similar lengths and output ports dis-
tributions to the AS2.0 real routing data.

For both IPv4 and IPv6 routing data, the performance of
the proposed algorithm and other algorithms are evaluated
in the following terms: the number of original routing pre-
fixes (N), the number of routing prefixes after leaf-pushing
(Np), the number of pairs of twin and uniform prefixes in
the leaf-pushing trie (Nmw), the number of routing prefixes
in the proposed algorithm (Np), the depth of the tree in the
proposed algorithm (D), the average number of memory
accesses for an address lookup (T,), and the memory
requirements (M) for various routing data. For the pro-
posed binary search algorithm, the reduction rate of en-
tries (Rg) show the efficiency of the proposed entry
reduction method. On the other hand, for the proposed
4-way search algorithm in IPv4, the reduction rate of en-
tries (Ryy) is presented by using the proposed entry reduc-
tion method and the proposed 4-way search. The reduction
rates represent the percentage of the reduced routing pre-
fixes, as compared with the number of routing prefixes
after leaf-pushing (Nip).

Tables 3 and 4 show the performance evaluation results
of the proposed algorithm, respectively. As we expect, the

leaf-pushing causes a significant increase in the number of
entries; the number of routing prefixes after leaf-pushing
(Np) is increased from 23% to 50% in IPv4 and by 3 to 5
times in IPv6. Hence, the algorithms using leaf-pushing re-
quires much memory space resulting in degraded search
performance. We have observed that there are a large
number of twin prefixes in the leaf-pushing trie as shown
by the number of pairs of twin prefixes (Nrw). Accordingly,
the merge operation in the proposed reduction method can
be plentifully performed with the leaf-pushed prefixes. As
a result, the total number of routing prefixes (Np) can be
reduced to a small value. The efficiency of the proposed
reduction method is also verified in terms of the reduction
rate of entries (Rg). The number of routing prefixes in the
proposed algorithm is less than that in a leaf pushing trie,
from 40% to 80% less, in both IPv4 and IPv6. As a result of
entry reduction, the average number of memory accesses
(T4) can be from 13 to 16 in IPv4 and from 11 to 16 in
IPv6. Because the binary search tree in the proposed algo-
rithms is perfectly balanced, the depth of the tree (D) is
optimal, and it is bounded by the log, Np. Therefore, the
maximum number of memory accesses is a small value
as possible. The memory requirement (M) is evaluated by
multiplying the node size by the number of entries. The
node size in the proposed binary search algorithm is 50
bits in IPv4 or 148 bits in IPv6, as shown in Fig. 6. Since
the data path for memory access is the byte unit, the actual
node size is 7 bytes in IPv4 or 19 bytes in IPv6. Due to this
small node size and the small number of entries, the mem-
ory requirement of the proposed algorithms is extremely
small. For the proposed 4-way search as shown in Table
3, although the memory requirement (M) is increased,
the average (T,) and the maximum (D) number of memory
accesses of the proposed 4-way search are decreased by
half, as compared with the proposed binary search. On
the other hand, the reduction rate for the large IPv4 routing
data such as with PORT80, Telstra and AS2.0, is larger than
that for the small routing data such as PacBell, MaeWest
and Funet. In the IPv6 random data, the reduction rate of
the routing data with a large amount is also better than
that with a small amount. Therefore, the proposed algo-
rithms provide good scalability for entry growth. In addi-
tion, as shown in Table 4, the lookup speed and the
memory requirement of the proposed binary search algo-
rithms do not depend on the increased address length in
IPv6, and these performances are only affected by the
reduction rate and the number of entries. Thus, the pro-
posed binary search algorithm has good scalability to IPv6.

Table 5 shows performance comparisons with other
algorithms for IPv4 routing data. The binary trie includes
many empty internal nodes, therefore, it has the largest
number of entries; accordingly, the lookup speed and
memory requirements are the poorest. Overall, the lookup
performance of the tree bitmap is better than the previous
binary search based algorithms and the proposed binary
search algorithm. But, the lookup speed of the proposed
4-way search algorithm is faster than that of the tree bit-
map. In addition, the memory requirement of the proposed
binary search algorithm is significantly smaller than that of
the tree bitmap. The number of entries in the DPT is in-
creased by using leaf-pushing. However, since the DPT is

H. Park et al./ Computer Networks 56 (2012) 231-243 241
Table 3
Performance evaluations of the proposed algorithm for IPv4 routing data.
Prefix set N Nip Nrw Binary search 4-Way search
Np R (%) Tq D M(KB) Np R (%) Ta D M(KB)
PacBell 20,519 25,337 4311 15,267 39.74 12.94 14 104.36 5461 78.45 6.66 7 149.32
MaeWest 29,584 42,908 9088 19,444 54.68 13.33 15 132.92 8522 80.14 6.87 8 233.02
Funet 40,904 58,993 15,383 19,410 67.10 13 15 132.69 8488 85.61 6.74 8 232.09
PORT80 112,310 145,267 40,905 38,596 73.43 14.3 16 263.84 21,845 84.96 7.44 8 597.32
Telstra 227,223 285,741 93,752 49,745 82.59 14.78 16 340.05 21,845 92.35 7.53 8 597.32
AS2.0 362,079 508,318 163,506 133,480 73.74 16.03 18 912.46 87,381 82.81 8.35 9 2389.32
Table 4
Performance evaluations of the proposed algorithm for IPv6 routing data.
Prefix set N Nip Nrw Binary search
Np Rg (%) Tq D M(KB)
AS2.0 5970 18,482 1768 5770 68.78 11.61 13 107.06
AS6447 5956 19,455 1753 11,353 41.64 12.59 14 210.65
rand_30k 30,000 74,399 3430 35,486 52.30 14.15 16 658.43
rand_50k 50,000 176,596 7781 68,979 60.94 15.09 17 1279.88
rand_100k 100,000 581,994 27,115 159,408 72.61 15.68 18 2957.77

able to perform a native binary search, the lookup speed is
not the worst. Alternately, because there are no duplicated
entries and no internal empty nodes in the BPT and the
MBPT, the numbers of entries are equal to the original
number. The numbers of entries with the LPFST and the
SSR is slightly reduced by means of overlapping specific
prefixes. However, since the trees of these algorithms are
unbalanced, the lookup speed is inadequate. In particular,
the worst-case lookup speeds of these algorithms depend
on the degree of balance of their associated trees, accord-
ing to the routing data. In some cases, the depth of the
BPT, the MBPT and the SSR may be longer than that of a trie
based algorithm whose depth is the maximum prefix
length. On the contrary, in the PV and the proposed binary
search algorithm, a native binary search is used on a bal-
anced tree with small disjointed entries which results in
good lookup speed. Moreover, by using proposed reduction
method, the number of entries in the proposed algorithm is
the smallest. As a result, the lookup speed in the proposed
binary search algorithm is faster than that in other algo-
rithms. The proposed 4-way search algorithm improves
the lookup performance of the proposed binary search
algorithm so that the lookup speed of the proposed 4-
way search algorithm is the best.

In respect to the memory requirement, the PV has the
largest node size and hence requires a large amount of
memory. Alternately, since the algorithms based on a bal-
anced tree such as with the MBPT, the SSR and the DPT do
not require left and the right pointers for a binary search,
their node size is small. Therefore, the memory require-
ment of these algorithms is generally smaller than that of
the algorithms based on an unbalanced tree. In the pro-
posed binary search algorithm, the search tree is not only
balanced, but the node size and the number of entries
are also the smallest, resulting in the extremely small
memory requirement. In case of the proposed 4-way
search algorithm, since the four pointers on each node
are required, the memory requirement is slightly in-
creased. But, the memory requirement of the proposed 4-
way search algorithm is also smaller than that of other
algorithms, except the bitmap tree.

Tables 6 and 7 shows performance comparisons for the
real and the random IPv6 routing data. The binary trie has
the poorest lookup performance because of increased
empty internal nodes and the depth of the tree. Compara-
tively, the performance of the tree bitmap is excellent in
IPv6. But, the depth of the tree bitmap is in proportion to
the address length so that this is deep. Since the tree of

Table 5

Performance comparisons with other algorithms for IPv4 routing data.
Algorithm PORT80 (112,310) Telstra (227,223) AS2.0 (362079)

Np T, D M Np T, D M Np Ta D M

Binary trie [1] 225,217 22.15 32 1319.63 452,905 24.47 32 2653.74 888,267 23.51 32 5204.69
Tree bitmap [10] 46,603 9.16 15 519.27 86,719 10.08 14 984.08 147,047 7.44 12 1646.00
LPFST [13] 83,736 18.93 25 981.28 183,025 21.8 33 2144.82 340,984 20.48 30 3995.91
BPT [14] 112,310 25.96 44 1316.13 227,223 30.94 66 2662.77 362,079 20.91 46 4243.11
MBPT [17] 112,310 26.29 47 987.10 227,223 29.56 58 1997.08 302,079 19.63 39 3182.33
SSR [18] 84,810 19.13 28 1022.23 184,706 22.9 37 2199.42 353,329 18.65 34 4439.01
PV [19] 70,418 15.33 17 1719.19 162,103 16.52 18 3957.59 327,507 17.45 19 7995.78
DPT [23] 145,267 16.19 18 851.17 285,741 17.17 19 1674.26 508,318 17.97 19 2978.43
Prop. binary 38,596 14.3 16 263.84 49,745 14.78 16 340.05 133,480 16.03 18 912.46
Prop. 4-way 21,845 7.44 8 597.32 21,845 7.53 8 597.32 87,381 8.35 9 2389.32

242

Table 6
Performance comparisons with other algorithms for real IPv6 routing data.

H. Park et al./ Computer Networks 56 (2012) 231-243

Algorithm AS2.0 (5,970) AS6447 (5,956)
Np T, D M Np T, D M
Binary trie[1] 42243 39.78 128 247.52 43297 40.12 128 253.69
Tree bitmap[10] 8882 11.15 35 75.00 9158 11.24 36 77.00
LPFST[13] 5913 29.17 49 144.36 5901 29.18 49 144.07
BPT[14] 5970 14.22 28 145.75 5956 14.14 27 145.41
MBPT[17] 5970 13.09 27 128.26 5956 13.00 27 127.96
SSR[18] 5955 13.47 46 153.10 5942 13.28 45 152.79
PV[19] 5538 11.59 13 567.86 5510 11.58 13 564.99
DPT[23] 18482 13.23 15 324.88 19455 13.32 15 341.98
Prop. Binary 5770 11.61 13 107.06 11353 12.59 14 210.65
Table 7

Performance comparisons with other algorithms for random IPv6 routing data.

Algorithm rand_30k (30,000) rand_50k (50,000) rand_100k (100,000)
Np T, D M Np T, D M Np T, D M

Binary trie[1] 1035743 56.47 128 6068.81 1676919 56.77 128 9825.70 3064322 57.88 128 17955.01
Tree bitmap[10] 20147 15.47 36 206.00 28578 1556 35 300.00 59256 15.91 36 618.00
LPFST[13] 29938 1943 49 730.91 49929 1922 49 1218.97 99896 19.61 49 2438.87
BPT[14] 30000 1526 28 732.42 50000 1594 29 1220.70 100000 16.98 32 244141
MBPT[17] 30000 1429 30 644.53 50000 1496 28 1074.22 100000 1592 29 2148.44
SSR[18] 29985 1458 48 783.41 49984 1512 48 1301.87 99985 1594 51 2579.01
PV[19] 27995 13.89 15 2870.58 43831 14.63 16 4494.39 73945 15.49 17 7582.25
DPT[23] 74399 15.23 17 1307.79 176596 16.51 18 3104.23 581994 1817 20 10230.36
Prop. Binary 35486 14.15 16 658.43 68979 15.09 17 1279.88 159408 15.68 18 2957.77

the LPFST based on a trie is more unbalanced, the LPFST has
also poor lookup speed. The IPv6 features of the other bin-
ary search based schemes such as BPT, MBPT and SSR, are
similar to their IPv4 features. The performances of these
algorithms are not seriously dependent upon the increased
address length in IPv6. Otherwise, since the PV requires
more prefix vectors in IPv6, the memory requirement of
the PV is the worst. Actually, the node size of the PV in
IPv6 is impractical so that the PV cannot be used in IPv6
networks. The DPT requires more memory space because
of the increased entries by the leaf-pushing as well. Con-
sidering the various aspects of other algorithms, the pro-
posed binary search algorithm has good scalability
toward IPv6 and will be useful in the future IPv6 routers.

5. Conclusion

In this paper, we propose an efficient IP address lookup
algorithm based on a small balanced tree by the use of a
new entry reduction. In order to construct a balanced tree,
the leaf-pushing technique is used for making the com-
pletely disjointed entries. In an attempt to reduce the in-
creased number of entries created by using leaf-pushing,
the proposed entry reduction method merges similar pairs
of prefixes, in terms of prefix strings and output ports, into
single common prefixes in the leaf-pushing binary trie. In
this way, a smaller number of completely disjointed prefix
entries can be achieved. In the proposed binary search
algorithm, the small balanced binary search tree is con-
structed by sorting these reduced disjointed entries with
a small node size. In the proposed multi-way search algo-
rithm, the lookup speed of the binary search algorithm is
improved. As a result, the proposed algorithms offer faster

lookup speed along with reduced memory requirements,
as compared with other algorithms. Furthermore, these
provide incremental updating and good scalability for a
large routing data and IPv6.

References

[1] HJ. Chao, Next generation routers, Proceedings of the IEEE 90 (9)
(2002) 1518-1558.

[2] M.A. Ruiz-Sanchez, E.W. Biersack, W. Dabbous, Survey and taxonomy
of IP address lookup algorithms, IEEE Network 15 (2) (2001) 8-23.

[3] V.C. Ravikumar, R.N. Mahapatra, L.N. Bhuyan, EaseCAM: an energy
and storage efficient TCAM-based router architecture for IP lookup,
IEEE Transactions on Computers 54 (5) (2005) 521-533.

[4] G.Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices, Morgan Kaufmann Publishers,
Elsevier Inc., 2005.

[5] C.Labovitz, G.R. Malan, F. Jahanian, Internet routing instability, IEEE/
ACM Transactions on Networking 6 (5) (1999) 515-528.

[6] V. Srinivasan, G. Varghese, Fast address lookups using controlled
prefix expansion, ACM Transactions on Computer Systems 17 (1)
(1999) 1-40.

[7] S. Sahni, K.S. Kim, Efficient construction of multibit tries for IP
address lookup, IEEE/ACM Transactions on Networking 11 (4) (2003)
650-662.

[8] S. Nilsson, G. Karlsson, IP address lookup using LC-tries, IEEE Journal
on Selected Areas in Communications 17 (6) (1999) 1083-1092.

[9] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding tables
for fast routing lookups, in: Proc. ACM SIGCOMM, 1997, pp. 3-14.

[10] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software
IP lookups with incremental updates, ACM SIGCOMM Computer
Communication Review 34 (2) (2004) 97-122.

[11] S. Sahni, L. haibin, Dynamic Tree Bitmap for IP Lookup and Update,
in: Proc. International Conference on Networking (ICN), 2007, pp.
79-84.

[12] H.Lim, C. Yim, E. Swartzlander Jr., Priority tries for IP address lookup,
IEEE Transactions on Computers 59 (6) (2010) 784-794.

[13] L. Wuu, T. Liu, K. Chen, A longest prefix first search tree for IP lookup,
Computer Networks 51 (12) (2007) 3354-3367.

[14] N. Yazdani, P.S. Min, Fast and scalable schemes for the IP address
lookup problem, in: Proc. IEEE HPSR, 2000, pp. 83-92.

H. Park et al./Computer Networks 56 (2012) 231-243 243

[15] C. Yim, B. Lee, H. Lim, Efficient binary search for IP address lookup,
IEEE Communications Letters 9 (7) (2005) 652-654.

[16] MJ. Akhbarizadeh, M. Nourani, Hardware-based IP routing using
partitioned lookup table, IEEE/ACM Transactions on Networking 13
(4) (2005) 769-781.

[17] H. Lim, B. Lee, W. Kim, Binary searches on multiple small trees for IP
address lookup, IEEE Communications Letters 9 (1) (2005) 75-77.

[18] H. Park, H. Kim, H.-S. Kim, S. Kang, A fast IP address lookup algorithm
based on search space reduction, IEICE Transactions on
Communications E93-B (4) (2010) 1009-1012.

[19] H. Lim, H. Kim, C. Yim, IP address lookup for internet routers using
balanced binary search with prefix vector, IEEE Transactions on
Communications 57 (3) (2009) 618-621.

[20] B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway
and multicolumn search, IEEE/ACM Transactions on Networking 7
(3) (1999) 324-334.

[21] X. Sun, Y. Zhao, An on-chip IP address lookup algorithm, IEEE
Transactions on Computers 54 (7) (2005) 873-885.

[22] H. Ly, S. Sahni, Enhanced interval trees for dynamic IP router-tables,
IEEE Transactions on Computers 53 (12) (2004) 1615-1628.

[23] H. Lim, W. Kim, B. Lee, Binary Search in a Balanced Tree for IP
Address Lookup, in: Proc. IEEE HPSR, 2005, pp. 490-494.

[24] Y. Chang, Fast binary and multiway prefix searches for packet
forwarding, Computer Networks 51 (3) (2007) 588-605.

[25] BGP Table obtained from <http://www.potaroo.net/>.

[26] K. Zheng, B. Liu, V6Gene: a scalable IPv6 prefix generator for route
lookup algorithm benchmark, in: Proc. IEEE AINA, 2006, pp. 147-
152.

Hyuntae Park received the B.S. degree and
the M.S. degree in electrical and electronic
engineering from Yonsei University, Seoul,
Korea, in 2004 and 2006, respectively. He is
currently working toward a Ph.D degree in
Electrical and Electronic Engineering at Yonsei
University. His research interests include
computer networking, IP switches/routing,
and system-on-a-chip (SoC)/VLSI design rela-
ted to network systems.

Hyejeong Hong received her B.S. degree in
electrical and electronic engineering from
Yonsei University, Seoul, Korea, in 2006. She is
currently working toward a Ph.D degree in
Electrical and Electronic Engineering at Yonsei
University. Her research interests include
multiprocessor architectures, reconfigurable
computing, network security and networking
systems.

Sungho Kang received the B.S. degree from
Seoul National University, Seoul, Korea, and
the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of
Texas (UT), Austin. He was a Postdoctoral
Fellow with UT, a Research Scientist with the
Schlumberger Laboratory for Computer Sci-
ence, Schlumberger, Inc.,, and a Senior Staff
Engineer with Semiconductor Systems Design
Technology, Motorola, Inc. Since 1994, he has
been a Professor with the Department of
Electrical and Electronic Engineering, Yonsei

\ = y
University, Seoul. His current research interests include system-on-a-chip
(SoC)/VLSI design, VLSI computer-aided design, and SoC testing and
design for testability.

http://www.potaroo.net/

	An efficient IP address lookup algorithm based on a small balanced tree using entry reduction
	1 Introduction
	2 Previous works
	2.1 Binary search algorithms based on a trie
	2.2 Binary search algorithms based on prefix values

	3 Proposed algorithm
	3.1 Entry reduction method
	3.2 Building
	3.3 Searching
	3.4 Updating
	3.5 Scalability to IPv6
	3.6 4-Way search algorithm
	3.7 Complexity of the proposed algorithms

	4 Performance evaluation
	5 Conclusion
	References

