
878 IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 9, SEPTEMBER 2010

A Pattern Group Partitioning for Parallel String Matching using a
Pattern Grouping Metric

HyunJin Kim and Sungho Kang, Member,IEEE

Abstract—Considering the increasing number of target pat-
terns for the intrusion detection systems (IDS), memory require-
ments should be minimized for reducing hardware overhead.
This paper proposes an algorithm that partitions a set of
target patterns into multiple subgroups for homogeneous string
matchers. Using a pattern grouping metric, the proposed pattern
partitioning makes the average length of the mapped target
patterns onto a string matcher approximately equal to the
average length of total target patterns. Therefore, the variety
of target pattern lengths can be mitigated because the number
of mapped target patterns onto each string matcher is balanced.

Index Terms—Computer network security, finite state ma-
chines, site security monitoring, and string matching.

I. INTRODUCTION

AS the hazardous attacks vary increasingly in the network
environments, IDSs have been adopted in order to protect

malicious packet payloads. Abnormal packet payload content
consists of a bundle of binary codes or characters. For de-
tecting the malicious packet payloads, target patterns should
be identified in IDSs; therefore, string matching engine is a
key device for the identification of target patterns in real time.
As the number of target patterns increases with the variety of
hazardous packet payloads, multiple string matchers can be
adopted to identify the target patterns in parallel [1].

In particular, deterministic finite automaton (DFA)-based
string matching could provide regularity with a memory-based
string matching engine, where the throughput could be main-
tained regularly due to the fixed latency of state transitions.
However, memory requirements can be proportional to the
number of states and the number of bits in each next state
pointer. Therefore, by adopting homogeneous multiple string
matchers where DFAs are mapped, the memory requirements
can be reduced with keeping scalability and updatability.

On the other hand, the variety of target pattern lengths can
be a challenge for reducing memory requirements. Pattern
length is defined as the number of characters or byte codes
in a target pattern. For the homogeneous string matchers, the
number of target patterns mapped onto each string matcher
could be different due to the different target pattern lengths.
In this case, even though the homogeneity of the string
matchers increases scalability and regularity, memory usage
is not efficient when adopting multiple string matchers.

Manuscript received December 3, 2009. The associate editor coordinating
the review of this letter and approving it for publication was M. Ma.

H. Kim is with the Flash Solution Development Team, Memory Division,
Samsung Electronics, Hwasung-City, 445-701, Korea.

S. Kang is with the Computer Systems and Reliable SoC Lab., Department
of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749,
Korea (e-mail: shkang@yonsei.ac.kr).

Digital Object Identifier 10.1109/LCOMM.2010.080210.092347

This paper proposes an algorithm that partitions a set
of target patterns into multiple subgroups for homogeneous
memory-based parallel string matchers. The proposed pattern
partitioning adopts a pattern grouping metric in order to obtain
the multiple subgroups. The proposed algorithm iteratively
maps each target pattern with the ordered list of target pat-
terns based on the pattern grouping metric. By applying the
metric, the average length of each subgroup’s target patterns
is approximately equal to the average length of total target
patterns. Therefore, the number of mapped target patterns onto
each string matcher is balanced. In addition, the problem of
the variety of target pattern lengths could be mitigated.

II. TARGET ARCHITECTURE

The target architecture is based on a memory-based string
matching with homogeneous string matchers. In a string
matcher, 𝑁 homogeneous finite state machine (FSM) tiles are
contained. An FSM tile contains a maximum of 𝑠 states and
takes 𝑛 bits of one character at each cycle. Target patterns are
distributed and mapped onto 𝐶 string matchers. Each state
has 2𝑛 pointers for the next state based on an 𝑛-bit input.
The number of bits in a pointer is determined as ⌈𝑙𝑜𝑔2𝑠⌉. The
address of a state indicates a PMV, where the number of bits
in a PMV 𝑝 refers to the maximum number of mapped target
patterns onto a string matcher. In a PMV, the 𝑖-th bit represents
whether the 𝑖-th pattern is matched in the state. When an
FSM takes one byte input, the string matcher supports the
Aho-Corasick algorithm [2] with one FSM; otherwise, the bit-
split string matching in [3] can be applied with multiple FSM
tiles. A matched pattern is recognized with full match vectors
(FMVs), which are obtained with the logical AND operation
of partial match vectors (PMVs) from all FSM tiles in a string
matcher.

III. PROPOSED PATTERN PARTITIONING

A. Pattern Grouping Metric

The proposed pattern partitioning concentrates on balancing
the average target pattern length for each string matcher;
however, in [3] and [4], the shared common prefixes increased
by applying lexicographical or gray-code based sorting. For
example, let us assume that a string matcher has an FSM with
the maximum of ten states and eight-bit input, where one state
is reserved for the initial state. In addition, “add,” “bolding,”
“caused,” and “do” are assumed the lexicographically ordered
target patterns. In the pattern partitioning based on the lexico-
graphical sorting in [3], patterns “add” and “bolding” cannot
be mapped onto a string matcher because a DFA for patterns
“add” and “bolding” requires eleven states. Therefore, only
the target pattern “add” can be mapped onto the first string

1089-7798/10$25.00 c⃝ 2010 IEEE

KIM and KANG: A PATTERN GROUP PARTITIONING FOR PARALLEL STRING MATCHING USING A PATTERN GROUPING METRIC 879

Fig. 1. Pseudocode of obtaining the list of target patterns to be mapped.

Fig. 2. Pseudocode of the proposed pattern partitioning.

matcher. In addition, patterns “bolding” and “caused” cannot
be mapped onto the same string matcher. Therefore, three
string matchers are required. On the other hand, the proposed
pattern partitioning adopts the average length of total target
patterns for the pattern grouping metric. The pattern grouping
metric, therefore, is equal to the average length of the total
target patterns. In this example, the pattern grouping metric is
4.75. In order to estimate worst-case number of mapped target
patterns, the maximum number of states in the FSM is divided
by the average target pattern length. By pairing target patterns
“add” and “caused” for the first string matcher and “bolding”
and “do” for the second string matcher, a balance can be
achieved between string matchers in terms of the number of
used states in the FSM and the average target pattern length
for each string matcher.

The list of target patterns to be mapped is obtained by
applying the pattern grouping metric. The pseudocode of
obtaining the target pattern list is described in Fig. 1; the
function Get List adopts two input parameters: the pattern
grouping metric m and the set of target patterns T. By
repeating loops for ordering target patterns, the average length
of target patterns in sequence could be set approximately equal
to the value of the pattern grouping metric. The function
of 𝐿𝑒𝑛𝑔𝑡ℎ(L) means the total sum of characters for target
patterns in a list L. The most appropriate target pattern is
determined in each turn by considering 𝐿𝑒𝑛𝑔𝑡ℎ(L).

B. Pattern Partitioning using Pattern Grouping Metric

With the ordered list based on the pattern grouping metric,
the proposed pattern partitioning determines the target patterns
mapped onto each string matcher iteratively. The pseudocode
of the proposed pattern partitioning is shown in Fig. 2. First,
the pattern grouping metric m is calculated by averaging the
total target pattern lengths. Then, the function Get List is
called with the purpose of obtaining the list of target patterns
to be mapped. In the inner loop of FOR, the maximum number
of mapped target patterns onto each string matcher, 𝑝(K), is
adopted for the first iteration. For the determined front target
patterns of the list L, a function Build Tries is called in order
to build tries. In this case, the failing pointer addition is not
performed, so that the processing time can decrease. For a
string matcher, if the maximum number of states among the
obtained DFAs is greater than the maximum number of states
available in an FSM tile 𝑠(K), the target patterns could not
be mapped onto the string matcher. Therefore, the number
of target pattern to be mapped decreases by one, and then the
inner loop is repeated. If the generated DFAs could satisfy the
hardware resource limitation of 𝑠(K), the inner loop is broken.
In the function Build DFAs, the Aho-Corasick algorithm is
applied to the obtained tries in order to add failing pointers
[3]. Then, the DFAs for a string matcher are stored in the list of
DFAs V. In addition, the pattern partitioning for another string
matcher is repeated until there are no remaining unmapped
target patterns.

Like the pattern mapping in [3] and [4], the number of bits
in a PMV 𝑝 and the number of states available in an FSM
tile 𝑠 are predetermined irrespective of the number of total
target patterns 𝑇 . Therefore, considering the WHILE loop in
Fig. 2, the pattern partitioning shows the linear complexity of
𝑂(𝑇). On the other hand, the time complexity of obtaining
the ordered target pattern list can be 𝑂(𝑇 𝑙𝑜𝑔2𝑇), which
is obtained based on the complexity of SORT and FIND
functions in Fig. 1. Considering to the large constant factor of
the pattern partitioning in time complexity, the complexity of
obtaining the ordered list could not be dominant.

IV. EXPERIMENTAL RESULTS

For the purpose of evaluating the proposed algorithm, a
set of total target patterns, total, was extracted from Snort
v2.8 rules [5]. The set total contained 7784 unique target
patterns, where the average length was 18.6 (char/pattern).
For the apples-to-apples comparisons, several existing pattern
partitioning approaches introduced in [3] were implemented.
Along with the lexicographical order, two additional cases
with random order and original order without sorting were
adopted, which were denoted as lexical, random, and origin,
respectively. In addition, the gray-code based sorting in [4],
which was denoted as group, was compared. In the existing
approaches above, target patterns were partitioned sequentially
according to their own pattern ordering methods; in the
proposed pattern partitioning, with the list of target patterns
based on the pattern grouping metric, target patterns were
partitioned sequentially. The target architectures based on the
Aho-Corasick algorithm and bit-split string matching were
evaluated. For the bit-split string matching, each FSM tile took
a two-bit input based on the design analysis in [3].

880 IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 9, SEPTEMBER 2010

Fig. 3. Performance comparisons for the Aho-Corasick algorithm.

Fig. 4. Performance comparisons for the bit-split string matching.

Fig. 3 and Fig. 4 illustrate the performance comparisons
for the Aho-Corasick algorithm and bit-split sting matching in
terms of the number of adopted string matchers. Considering
the average length of total target patterns, the numbers of
bits in a PMV were varied from 8 to 20 and from 16 to 40
when the numbers of states in an FSM were 128 and 256,
respectively. In Fig. 3, the number of adopted string matchers
was reduced on average by 10.0%-17.1%, compared with
other pattern partitioning approaches. In the evaluation for
the bit-split string matching of Fig. 4, the number of adopted
string matchers was reduced on average by 10.5%-17.2%. In
particular, when the number of bits in a PMV was small and
the number of states in an FSM was 128, the number of
adopted string matchers was greatly reduced. This means that
the proposed pattern partitioning could be more efficient when
the hardware resource was tightly limited. When the number
of states in an FSM was 256, lexical and group decreased the
number of adopted string matchers greatly with the number of
bits in a PMV. This means that the shared prefixes increased
due to the increasing number of states in an FSM. However,
because the number of states in an FSM was limited, the
number of adopted string matchers did not decrease linearly
with the increasing number of bits in a PMV.

In order to know the resource usage efficiency of the
proposed algorithm, the resource usage for the bit-split string
matching engine was evaluated in terms of the number of un-
used states in all FSM tiles in Fig. 5. The number of the unused
states was reduced on average by 34.7%-49.2%, in comparison
with lexical, origin, and group. Even though the number of
unused states was small in the case of random, the number
of adopted string matchers was greater, compared to the case
of proposed in Fig. 3. This means that the number of mapped
target patterns onto each string matcher was not balanced in
random. In particular, the numbers of unused states for lexical
and group were greater than those of other approaches, which

Fig. 5. Resource usage comparisons for the bit-split string matching.

means that the numbers of shared common prefixes in lexical
and group could be greater than those of other approaches.
In both cases, however, the decreasing number of adopted
string matchers was not linearly proportional to the increasing
shared common prefixes. This means that in lexical and group,
the decrease in the number of adopted string matchers was
limited mainly due to the variety of target pattern lengths
and the pattern distributions for each string matcher. Even
though the number of shared common prefixes was small, the
proposed pattern partitioning decreased the number of unused
states by increasing the number of mapped target patterns.
Therefore, the proposed algorithm could mitigate the problem
of the variety of target pattern lengths.

V. CONCLUSION

By adopting the pattern grouping metric, the proposed pat-
tern group partitioning decreases the number of adopted string
matchers by balancing the numbers of mapped target patterns
between string matchers. For the tightly limited hardware
resource, the number of adopted string matchers decreases
significantly without any additional hardware. Considering
the enhanced performance and the complexity, the proposed
pattern partitioning is useful for reducing hardware cost for
the DFA-based parallel string matching engine.

REFERENCES

[1] P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “Using string matching
for deep packet inspection,” IEEE Computer, vol. 41, no. 4, pp. 23-28,
2008.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333-340, 1975.

[3] L. Tan, B. Brotherton, and T. Sherwood, “Bit-split string-matching
engines for intrusion detection and prevention,” ACM Trans. Architect.
and Code Optimization, vol. 3, no. 1, pp. 3-34, Mar. 2006.

[4] H. Kim, H. Hong, H.-S. Kim, and S. Kang, “A memory-efficient parallel
string matching for intrusion detection systems,” IEEE Commun. Lett.,
vol. 13, no. 12, pp. 1004-1006, Dec. 2009.

[5] Snort, Network Intrusion Detection System. Available:
http://www.snort.org.

