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With the growth of memory capacity and density, memory 
testing and repair with the goal of yield improvement have 
become more important. Therefore, the development of high 
efficiency redundancy analysis algorithms is essential to 
improve yield rate. In this letter, we propose an improved built-
in redundancy analysis (BIRA) algorithm with a minimized 
binary search tree made by simple calculations. The tree is 
constructed until finding a solution from the most probable 
branch. This greatly reduces the search spaces for a solution. 
The proposed BIRA algorithm results in 100% repair efficiency 
and fast redundancy analysis. 
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I. Introduction 
As the density of memory has increased, the number of 

related defects has also increased [1]. To increase device yield, 
many manufacturers use incorporated redundancy that can be 
used to replace faulty modules. Therefore, the implementation 
of effective redundancy algorithms is essential.  

Recently, a memory test methodology using built-in 
redundancy analysis (BIRA) algorithms was introduced [2]-[4]. 
If repairable, a memory with defects can be repaired using 
comprehensive real-time exhaustive search test and analysis 
(CRESTA) [2] and IntelligentSolve [3] with 100% accuracy 
with given redundancies. CRESTA has very short redundancy 
analysis (RA) time because it analyzes faulty cells using sub-
analyzers during searching defect addresses. However, 
CRESTA incurs an enormous hardware overhead when the 
number of spare memories is increased. Essential spare 
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pivoting (ESP) [4] repairs faulty cells when the number of 
faulty cells is more than an essential number in the same 
address, and local repair-most (LRM) [4] repairs faulty cells 
using repair-most method with a local bitmap. ESP incurs the 
lowest hardware overhead costs, but ESP and the LRM do not 
have 100% repair efficiencies. In particular, ESP has the lowest 
repair efficiency when the number of spares is large. 
IntelligentSolve, which is based on the exhaustive binary 
search tree, is an algorithm to reduce the number of backtracks 
required to search the repair solution. However, 
IntelligentSolve requires a long search time in nearly all serious 
cases. In this letter, we propose a new enhanced BIRA 
algorithm with a minimized partial search tree. 

II. Previous Works 

Because redundancy analysis is NP-complete, the BIRA 
algorithm must use an exhaustive search method to result in 
100% repair efficiency. Therefore, almost all BIRA algorithms 
which have 100% repair efficiencies use binary search tree 
methods. The depth of the binary search tree is determined by 
the number of spare rows (SRs) and spare columns (SCs). 
Orderly SRs/SCs are located against each fault site. As an 
example, if the fault sites are located as shown in Fig. 1(a), the 
result of the exhaustive binary search tree is as shown in Fig. 1(b). 

A fault list consists of two tables for storing row/column 
faulty addresses. Using these two tables, the dynamic must-
repair which makes the reduced binary search sites is 
performed. As an example, the first repair node is chosen using 
SRs because of the row-first strategy. As the number of SRs is 
reduced, the must-repair is performed by counting the faults of 
column addresses. If the faults of the column address are more 
than the number of SRs, the column node is covered by an SC.  
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Fig. 1. Example binary search tree (no. of SR/SC: 3/2). 
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After this process is repeated, the search is performed for the 
next fault. In this process, the dynamic must-repair confirms 
whether the branch of the binary tree is repairable or 
unrepairable before the search is performed. Therefore, the 
dynamic must-repair reduces the binary search tree sites. In 
addition, the IntelligentSolveFirst (ISF) method stops when the 
first solution is confirmed. 

III. Proposed Minimized Binary Search Tree 

The ISF makes all branches in the order of stored faulty 
addresses. However, the proposed RA algorithm generates the 
minimized partial binary search tree which continues to be 
constructed until finding a solution from the most probable 
branch. In other words, the proposed algorithm reduces a 
search space for searching a solution. First, before the binary 
search tree analysis, the remaining faulty cells are reordered. 
The time required for redundancy analysis is determined by the 
number of backtracks necessary to find the solution. However, 
orthogonal faulty cells that do not have the same address as 
other faulty cells can be repaired using the remaining SRs/SCs 
from the last time other faulty cells were repaired. Therefore, 
the proposed algorithm repairs orthogonal faulty cells after 

 

Fig. 2. Repair solution for example shown in Fig. 1 (SR/SC: 3/2).
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repairing non-orthogonal faulty cells. This process reduces the 
depth of the binary tree. The reduced depth also makes the 
number of backtracks decrease. 

The final binary search tree is constructed from the most 
probable branch. An optimal solution can most likely be found 
when the search tree is performed from the most probable 
branch. If the most probable branch is not a solution, then the 
proposed algorithm finds a solution by backtracking from the 
branch. For this final binary search tree, information about 
faulty cells should be acquired from the fault list. This fault list 
is realized by using two small content addressable memories 
(CAMs) of size 2SRSC, as in the IntelligentSolve method. 
These row/column CAMs provide the number of faults of each 
faulty row/column address. To repair faulty cells, the proposed 
algorithm decides if we use SRs or SCs through the 
comparison with the row and column counts. For example, if a 
fault that has a row address count of 2 and a column count of 1 
is inserted, then the branch of a row has a higher probability for 
an optimal solution. Figure 2 shows the result of a minimized 
binary search tree solution for the example shown in Fig. 1.  

(a) (0, 0) fault: the row count 2 < column count 3. Therefore, 
the branch of the column address 0 is chosen. The count of 
the row address 0 is changed from 2 to 1, and the count of 
the column address 0 is changed from 3 to 0. 

(b) (0, 2) fault: as in (a), the row count 1 < column count 2. So, 
a spare column is chosen. The count of the row address 0 
is changed from 1 to 0, and the count of column address 2 
is changed from 2 to 0. 

(c) (2, 0), (3, 2), and (4, 0) faults already have a solution. 
(d) (5, 4), (6, 6), and (1, 3) faults: in (a) and (b), all spare 

columns were used. Therefore, three SRs should be 
chosen. 

(e) No faults remain at this point. Therefore, a final unique 
solution is constructed with row addresses of 1, 5, and 6, 
and column addresses of 0 and 2. 

Because of the reduced SC after (a), dynamic must-repair  
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can be performed. If dynamic must-repair is performed, then 
row address 5 must be repaired by one SR. Therefore, row 
address 5 is chosen after the (a) process is performed. In this 
example, the proposed algorithm makes an optimal solution 
without any backtracks. In this way, the proposed algorithm 
can dramatically reduce the number of backtracks, and the time 
required for the memory test is greatly reduced. 

IV. Experimental Results 

1024×1024-bit memory was used for the experiments to 
guarantee fair comparisons with other RA researches. Each 
experiment was repeated 1,000 times with randomly generated 
faulty addresses. The distribution of defects was limited to 1/64 
of the memory area to obtain optimal repair rates. The trend of 
the simulated results is nearly identical in comparison to the 
experimental results with defects scattered around the whole 
memory area. Figure 3 shows repair efficiencies as a function 
of the number of defects. The ESP method has much lower 
repair efficiencies when the number of defects is large. Since 
ESP does not have 100% repair efficiency, the proposed 
algorithm is compared with the ISF algorithm such that both 
algorithms have 100% repair efficiencies. 

For comparison of RA times, Figs. 4 and 5 show the number 
of clock cycles of the BIRA algorithms. It can be seen that the 
proposed algorithm, which stops when the first solution is 
confirmed, requires fewer clocks than that of the ISF algorithm. 
Figure 6 shows the hardware overhead costs of the RA 
modules. The hardware overhead costs are calculated by 
equations for storage of the BIRA modules. Among the 
existing RA algorithms, ESP has the lowest hardware overhead 
cost. However, the ESP and LRM methods do not have 100% 
repair efficiencies. The proposed algorithm has the same 
hardware overhead as the ISF, but it has a lower hardware 
overhead than the CRESTA and LRM methods as shown in 
Fig. 6. Table 1 shows the performance comparison results with 
the conventional algorithms. As shown in Table 1, the proposed 
algorithm has superior performance. The proposed algorithm 
 

 

Fig. 3. Comparison of repairable percentages. 
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Fig. 4. Comparison of the number of clock cycles (SR/SC: 3/3, 5/5).
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Fig. 5. Comparison of the number of clock cycles. 
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Fig. 6. Comparison of hardware overhead costs incurred by 
different algorithms (SR: 3). 
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Table 1. Performance comparison of the proposed algorithm with 
other BIRA algorithms. 

Algorithm CRESTA [2] ESP [4] LRM [4] ISF [3] Proposed

RA time Very short Short Short Medium Short 
Hardware 
overhead Very high Small Medium Small Small 

Repair 
efficiency 100% <100% <100% 100% 100% 

 

 
has 100% repair efficiency, smaller hardware overhead, and a 
minimized RA time. 

V. Conclusion 

The main idea of the proposed algorithm is to identify a 
solution in the shortest possible time through reducing the 
search space. The minimized binary tree continues to be built 
until the solution is found from the most probable branch. 
Therefore, the proposed BIRA algorithm has 100% repair 
efficiency and minimizes the RA time. According to the 
experimental results, the proposed algorithm generates 
solutions with the minimal number of clocks when searching a 
minimized binary search tree. Therefore, application of the 
proposed algorithm can result in increased memory 
manufacturing yield and reliability. 
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