
638 Hyungjun Cho et al. © 2010 ETRI Journal, Volume 32, Number 4, August 2010

With the growth of memory capacity and density, memory
testing and repair with the goal of yield improvement have
become more important. Therefore, the development of high
efficiency redundancy analysis algorithms is essential to
improve yield rate. In this letter, we propose an improved built-
in redundancy analysis (BIRA) algorithm with a minimized
binary search tree made by simple calculations. The tree is
constructed until finding a solution from the most probable
branch. This greatly reduces the search spaces for a solution.
The proposed BIRA algorithm results in 100% repair efficiency
and fast redundancy analysis.

Keywords: BIRA, repair efficiency, binary search tree.

I. Introduction
As the density of memory has increased, the number of

related defects has also increased [1]. To increase device yield,
many manufacturers use incorporated redundancy that can be
used to replace faulty modules. Therefore, the implementation
of effective redundancy algorithms is essential.

Recently, a memory test methodology using built-in
redundancy analysis (BIRA) algorithms was introduced [2]-[4].
If repairable, a memory with defects can be repaired using
comprehensive real-time exhaustive search test and analysis
(CRESTA) [2] and IntelligentSolve [3] with 100% accuracy
with given redundancies. CRESTA has very short redundancy
analysis (RA) time because it analyzes faulty cells using sub-
analyzers during searching defect addresses. However,
CRESTA incurs an enormous hardware overhead when the
number of spare memories is increased. Essential spare

Manuscript received Jan. 29, 2010; revised Mar. 18, 2010; accepted Apr. 5, 2010.
Hyungjun Cho (phone: +82 2 2123 2775, email: chj0937@soc.yonsei.ac.kr), Wooheon

Kang (email: sudal@soc.yonsei.ac.kr), and Sungho Kang (corresponding author, email:
shkang@yonsei.ac.kr) are with the Department of Electrical and Electronic Engineering,
Yonsei University, Seoul, Rep. of Korea.

doi:10.4218/etrij.10.0210.0032

pivoting (ESP) [4] repairs faulty cells when the number of
faulty cells is more than an essential number in the same
address, and local repair-most (LRM) [4] repairs faulty cells
using repair-most method with a local bitmap. ESP incurs the
lowest hardware overhead costs, but ESP and the LRM do not
have 100% repair efficiencies. In particular, ESP has the lowest
repair efficiency when the number of spares is large.
IntelligentSolve, which is based on the exhaustive binary
search tree, is an algorithm to reduce the number of backtracks
required to search the repair solution. However,
IntelligentSolve requires a long search time in nearly all serious
cases. In this letter, we propose a new enhanced BIRA
algorithm with a minimized partial search tree.

II. Previous Works

Because redundancy analysis is NP-complete, the BIRA
algorithm must use an exhaustive search method to result in
100% repair efficiency. Therefore, almost all BIRA algorithms
which have 100% repair efficiencies use binary search tree
methods. The depth of the binary search tree is determined by
the number of spare rows (SRs) and spare columns (SCs).
Orderly SRs/SCs are located against each fault site. As an
example, if the fault sites are located as shown in Fig. 1(a), the
result of the exhaustive binary search tree is as shown in Fig. 1(b).

A fault list consists of two tables for storing row/column
faulty addresses. Using these two tables, the dynamic must-
repair which makes the reduced binary search sites is
performed. As an example, the first repair node is chosen using
SRs because of the row-first strategy. As the number of SRs is
reduced, the must-repair is performed by counting the faults of
column addresses. If the faults of the column address are more
than the number of SRs, the column node is covered by an SC.

A Built-In Redundancy Analysis with a
Minimized Binary Search Tree

 Hyungjun Cho, Wooheon Kang, and Sungho Kang

ETRI Journal, Volume 32, Number 4, August 2010 Hyungjun Cho et al. 639

Fig. 1. Example binary search tree (no. of SR/SC: 3/2).

0

R
ow

 a
dd

re
ss

SR

SC
Column address

1 2 3 4 5 6

0

1

2

3

4

5

6

(a) Faulty cells in a memory

0 0

1

Start

3

2 0

0

2 3

4

2

5

2 0

2

5

3

0 4

0 2

1 3 1

3 2 3

4 5 5

53

6

R

R

R C R

R

R

R R

R

R

R

R R

R R R

R

R

C

C

C

C

C C R

C

C

C

C

C

C

C

(b) Binary search tree to find a solution

R: SR to repair a faulty line
C: SC to repair a faulty line

Unique solution

After this process is repeated, the search is performed for the
next fault. In this process, the dynamic must-repair confirms
whether the branch of the binary tree is repairable or
unrepairable before the search is performed. Therefore, the
dynamic must-repair reduces the binary search tree sites. In
addition, the IntelligentSolveFirst (ISF) method stops when the
first solution is confirmed.

III. Proposed Minimized Binary Search Tree

The ISF makes all branches in the order of stored faulty
addresses. However, the proposed RA algorithm generates the
minimized partial binary search tree which continues to be
constructed until finding a solution from the most probable
branch. In other words, the proposed algorithm reduces a
search space for searching a solution. First, before the binary
search tree analysis, the remaining faulty cells are reordered.
The time required for redundancy analysis is determined by the
number of backtracks necessary to find the solution. However,
orthogonal faulty cells that do not have the same address as
other faulty cells can be repaired using the remaining SRs/SCs
from the last time other faulty cells were repaired. Therefore,
the proposed algorithm repairs orthogonal faulty cells after

Fig. 2. Repair solution for example shown in Fig. 1 (SR/SC: 3/2).

(0, 0) fault
Row count: 2 < Col count: 3

(0, 2) fault

Row count: 1 < Col count: 2

(5, 4) fault

Row count: 2 > Col count: 1
SC remained: 0

(6, 6) fault

Row count: 1 = Col count: 1
SC remained: 0

0 0

0 2

5

6

C

C

R

R
(1, 3) fault

Row count: 1 = Col count: 1
SC remained: 0

1

R

Start

R: SR to repair a faulty line
C: SC to repair a faulty line

Unique solution

repairing non-orthogonal faulty cells. This process reduces the
depth of the binary tree. The reduced depth also makes the
number of backtracks decrease.

The final binary search tree is constructed from the most
probable branch. An optimal solution can most likely be found
when the search tree is performed from the most probable
branch. If the most probable branch is not a solution, then the
proposed algorithm finds a solution by backtracking from the
branch. For this final binary search tree, information about
faulty cells should be acquired from the fault list. This fault list
is realized by using two small content addressable memories
(CAMs) of size 2SRSC, as in the IntelligentSolve method.
These row/column CAMs provide the number of faults of each
faulty row/column address. To repair faulty cells, the proposed
algorithm decides if we use SRs or SCs through the
comparison with the row and column counts. For example, if a
fault that has a row address count of 2 and a column count of 1
is inserted, then the branch of a row has a higher probability for
an optimal solution. Figure 2 shows the result of a minimized
binary search tree solution for the example shown in Fig. 1.

(a) (0, 0) fault: the row count 2 < column count 3. Therefore,
the branch of the column address 0 is chosen. The count of
the row address 0 is changed from 2 to 1, and the count of
the column address 0 is changed from 3 to 0.

(b) (0, 2) fault: as in (a), the row count 1 < column count 2. So,
a spare column is chosen. The count of the row address 0
is changed from 1 to 0, and the count of column address 2
is changed from 2 to 0.

(c) (2, 0), (3, 2), and (4, 0) faults already have a solution.
(d) (5, 4), (6, 6), and (1, 3) faults: in (a) and (b), all spare

columns were used. Therefore, three SRs should be
chosen.

(e) No faults remain at this point. Therefore, a final unique
solution is constructed with row addresses of 1, 5, and 6,
and column addresses of 0 and 2.

Because of the reduced SC after (a), dynamic must-repair

640 Hyungjun Cho et al. ETRI Journal, Volume 32, Number 4, August 2010

can be performed. If dynamic must-repair is performed, then
row address 5 must be repaired by one SR. Therefore, row
address 5 is chosen after the (a) process is performed. In this
example, the proposed algorithm makes an optimal solution
without any backtracks. In this way, the proposed algorithm
can dramatically reduce the number of backtracks, and the time
required for the memory test is greatly reduced.

IV. Experimental Results

1024×1024-bit memory was used for the experiments to
guarantee fair comparisons with other RA researches. Each
experiment was repeated 1,000 times with randomly generated
faulty addresses. The distribution of defects was limited to 1/64
of the memory area to obtain optimal repair rates. The trend of
the simulated results is nearly identical in comparison to the
experimental results with defects scattered around the whole
memory area. Figure 3 shows repair efficiencies as a function
of the number of defects. The ESP method has much lower
repair efficiencies when the number of defects is large. Since
ESP does not have 100% repair efficiency, the proposed
algorithm is compared with the ISF algorithm such that both
algorithms have 100% repair efficiencies.

For comparison of RA times, Figs. 4 and 5 show the number
of clock cycles of the BIRA algorithms. It can be seen that the
proposed algorithm, which stops when the first solution is
confirmed, requires fewer clocks than that of the ISF algorithm.
Figure 6 shows the hardware overhead costs of the RA
modules. The hardware overhead costs are calculated by
equations for storage of the BIRA modules. Among the
existing RA algorithms, ESP has the lowest hardware overhead
cost. However, the ESP and LRM methods do not have 100%
repair efficiencies. The proposed algorithm has the same
hardware overhead as the ISF, but it has a lower hardware
overhead than the CRESTA and LRM methods as shown in
Fig. 6. Table 1 shows the performance comparison results with
the conventional algorithms. As shown in Table 1, the proposed
algorithm has superior performance. The proposed algorithm

Fig. 3. Comparison of repairable percentages.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of defects

R
ep

ai
ra

bl
e

ef
fic

ie
nc

y
(%

)

Proposed (SR/SC: 5/5)
Proposed (SR/SC: 3/3)
ESP [4] (SR/SC: 5/5)
ESP [4] (SR/SC: 3/3)

Fig. 4. Comparison of the number of clock cycles (SR/SC: 3/3, 5/5).

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of defects

N
o.

 o
f c

lo
ck

 c
yc

le
s

ISF [3] (SR/SC: 5/5) Proposed (SR/SC: 5/5)

0
20
40
60
80

100

1 2 3 4 5 6 7 8 9

ISF [3] (SR/SC: 3/3)
Proposed (SR/SC: 3/3)

Fig. 5. Comparison of the number of clock cycles.

0

20

40

60

80

100

120

140

160

180

200

2/2 3/2 3/3 4/3 4/4 5/4 5/5
SR/SC

N
o.

 o
f c

lo
ck

 c
yc

le
s

ISF [3] (no. of faults: 7)
Proposed (no. of faults: 7)
ISF [3] (no. of faults: 12)
Proposed (no. of faults: 12)

Fig. 6. Comparison of hardware overhead costs incurred by
different algorithms (SR: 3).

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 2 3 4 5 6 7 8 9 10

No. of SC

H
ar

dw
ar

e
ov

er
he

ad
 c

os
t (

no
. o

f b
its

) CRESTA [2]
LRM [4]
ESP [4]
Proposed

ETRI Journal, Volume 32, Number 4, August 2010 Hyungjun Cho et al. 641

Table 1. Performance comparison of the proposed algorithm with
other BIRA algorithms.

Algorithm CRESTA [2] ESP [4] LRM [4] ISF [3] Proposed

RA time Very short Short Short Medium Short
Hardware
overhead Very high Small Medium Small Small

Repair
efficiency 100% <100% <100% 100% 100%

has 100% repair efficiency, smaller hardware overhead, and a
minimized RA time.

V. Conclusion

The main idea of the proposed algorithm is to identify a
solution in the shortest possible time through reducing the
search space. The minimized binary tree continues to be built
until the solution is found from the most probable branch.
Therefore, the proposed BIRA algorithm has 100% repair
efficiency and minimizes the RA time. According to the
experimental results, the proposed algorithm generates
solutions with the minimal number of clocks when searching a
minimized binary search tree. Therefore, application of the
proposed algorithm can result in increased memory
manufacturing yield and reliability.

References

[1] Y. Park et al., “An Effective Test and Diagnosis Algorithm for
Dual-Port Memories,” ETRI J., vol. 30, no. 4, Aug. 2008, pp. 555-
564.

[2] T. Kawagoe et al., “A Built-in Self-Repair Analyzer (CRESTA)
for Embedded DRAMs,” Proc. Int. Test Conf. (ITC), 2000, pp.
567-574.

[3] P. Öhler, S. Hellebrand, and H.J. Wunderlich, “An Integrated
Built-In Test and Repair Approach for Memories with 2D
Redundancy,” Proc. European Test Symp. (ETS), May. 2007, pp.
91-96.

[4] C.T. Huang et al., “Built-In Redundancy Analysis for Memory
Yield Improvement,” IEEE Trans. Reliab., vol. 52, Dec. 2003, pp.
386-399.

	I. Introduction
	II. Previous Works
	III. Proposed Minimized Binary Search Tree
	IV. Experimental Results
	V. Conclusion
	References

