
VLSI Design of AntNet for Adaptive Network Routing

Jin-Ho Ahn, Jae Seuk Oh, Sungho Kang

Department of Electrical and Electronic Engineering
Yonsei University

134 Shinchon-Dong Seodaemoon-Gu, Seoul, Korea

ABSTRACT

The AntNet is an indirect communication algorithm for
adaptive routing in a network. A unit used for adaptive
routing is called an agent. The AntNet consists of agents
whose behaviors look like those of ants, and has many
characteristics such as adaptability, survivability, and self-
organization. These features are very attractive to today’s
network environment. The function of an agent dominates
the efficiency of the AntNet, and has deep relation with
the processing time of an agent in a router. Therefore, it is
necessary to handle agents using a dedicated hardware for
the minimization and regularity of the processing time. In
this paper, the efficient architecture that can be easily
adapted to a hard-wired form for an AntNet-based routing
is developed, and verified by the comparisons with the
original AntNet and RTL-level simulations. The results of
simulation show that the proposed architecture is suitable
and efficient to realize adaptive routing based on the
AntNet.

1. INTRODUCTION

Internet packet data has increased rapidly in recent years.
Therefore, it is not so hard to imagine serious network
data congestion in the near future. Gigabit routers and the
effective use of resources by differentiating services could
somewhat alleviate such a problem but it cannot be solved
absolutely. Intelligent routing may be another solution for
the aforementioned problem. Especially, routing methods,
based on bio-inspired mechanisms, have many merits such
as adaptation, survival capacity, and self-organization [1].
The system that includes these features can be easily
adapted to new environments, and be stable in diverse and
dynamic conditions, and do all by itself without central
controls. The AntNet is an adaptive and distributed
routing algorithm applying ant colony organization [2]. It
mimics the activities of social insects such as making
swarms and communicating with each other by chemical
substance called pheromone. An ant is a kind of an agent
packet used to investigate network conditions with a
round trip from a source to a destination node. There are

two types of ants: forward ants and backward ants. A
forward ant collects network information on the way of
going to a destination node. When the forward ant reaches
the destination node, it becomes a backward ant. The
backward ant returns to the source node that the forward
ant is generated. While returning to the source, the
backward ant updates outdated routing information of the
nodes that the forward ant has visited with information
collected by the forward ant. In this way, ants
communicate each other about the quality of routing paths
through information stored in the nodes. It is proved that
the AntNet is superior to other algorithms in many
respects such as routing performance, adaptability, and
stability under most of traffic distributions [2,3,4]. But, its
efficiency is fully dominated by quality of collected
information. An ant’s trip time is the most important
factor to determine it. Therefore, it is necessary to
minimize and regularize the processing time of an ant
packet in each node to get accurate and pure trip time.
Also, a rapid update of routing information is essential to
select a correct routing path of normal data packets.
According to consider these requisites, the block to
process ants should have a hard-wired form like
forwarding or classification of packet in a router as
possible.

This paper presents a hardware architecture to realize
an AntNet-based routing in practical environments. The
original AntNet algorithm is modified to fit a hard-wired
form with minimizing the performance degradation and
hardware overhead. The proposed architecture and its
detail descriptions are presented in section 2 and 3
respectively, and the performance evaluation is given in
section 4. The conclusion of this paper is presented in
section 5.

2. PROPOSED ARCHITECTURE

The proposed architecture is mainly based on the AntNet
algorithm. The block diagram of the proposed architecture
is shown in Fig. 1. It consists of four major sub-blocks
excluding external interface blocks. The major blocks are
designed only to handle ant packets defined in Fig. 2. The
detailed descriptions of an ant are as follows:

● Type indicates whether the packet is a forward ant or
a backward ant.

● sNode denotes the address of the start node that an
ant is produced.

● dNode denotes the address of the end node to which
an ant goes.

● pNodeOdr indicates the order of the nodes that an
ant visits. The number starts from zero.

● tNodeNum indicates the total number of the nodes
that an ant visits.

● intNode denotes the address of the nodes that an ant
visits.

● visTime indicates the time that an ant arrives at the
node.

In contrast to the original AntNet, we can remove stack
memories at all nodes using the proposed ant’s structure
including all the data needed for evaluating a routing path.
An ant packet’s length is fixed to eighty bytes. It is very
useful to fix ant’s size in many cases. Currently, we limit
the total number of the nodes that an ant visits to ten. The
ant’s information except a dNode is set automatically on
the way of routing, but the dNode is initiated and fixed at
a starting node. The dNode can be determined by a
manual mode or random mode. In a manual mode, a user
can directly configure the dNode with a predefined
address table. Otherwise, the dNode is randomly
determined according to the destination address
information of normal data packets.

Sellink

Hostif

UprtableMemif

Setrfm

16 or 32

64

Top
ctrl

Registers

16 16

control signals
with a host processor

routing table data and
traffic model data

with external DRAMs

data path control path
Figure 1. Block Diagram of the Proposed Architecture

Type
(1)

sNode
(4)

dNode
(4)

pNodeOdr
(1/2)

intNode
(4*10)

visTime
(3*10)

The Total Size : 80 Bytes

tNodeNum
(1/2)

Figure 2. Ant Packet Structure

3. FUNCTIONAL DESIGN

3.1. Routing table and Traffic model

The basic structures of a routing table and a traffic model
are nearly the same as those of the original AntNet. There
are two data structures at each node, one is a local traffic
model, and the other is a routing table. A local traffic
model is a kind of statistical model that represents a traffic
distribution over networks. A routing table contains the
entries, which express the probabilities to choose a next
node. A next node is selected stochastically in proportion
to the probabilities of a routing table. We set a probability
to one byte size for efficient calculations. Therefore, each
entry has a value whose range is from 0 to 255. A routing
table consists of two-dimensional structures. Each row
represents an adjacent node, and each column represents a
destination node. If a node has ten neighborhood nodes
and twenty destination nodes, the node needs to have a
routing table whose size is (10, 20). The summation of all
probabilities per a column must be 255. The total number
of destination nodes can be limited to keep down memory
usage, and to lead an efficient update of routing tables.

3.2. Sellink

Rn

R3

R2

R1

+

routing table
data

Ri > PRN N i = n

Y

i = i + 1

M
U
X

N

Ri < Rtemp

8Bit LFSR

Rtemp N

Y

i => Next node
Ri => Rtemp

END

Y

Ri : ith register, i = 1,2,..,n
Rtemp : Temporal register
PRN : Pseudo-random number

Figure 3. Selection of a Next Node

Sellink is a unit to select a next node using the probability
values of a routing table at a current node. Its detailed
functional procedure is depicted in Fig. 3. First, Sellink
requests the probability data of a routing table to external
memory, and carries the data from the memory. The data
is accumulated to registers in order. If a current node has
ten neighborhood nodes connected directly, it is needed to
have ten byte registers. The accumulated registers are
compared with a pseudo-random value produced by a
LFSR (Linear Feedback Shift Register) one by one. After
all registers are compared, a next node is determined.
Finally, the selected node is translated to a real IP address
through a predefined address table.

3.3. Setrfm

It is essential to estimate the relative goodness of each
link for adaptive routing in dynamic network
environments. A reinforcement value allows us to

speculate a quality of each link, and set the amount of
varying a probability of a routing table. Though several
factors are induced to get a reinforcement value [2,5], we
only use the trip time of ants. The equation for a
reinforcement value, r, is shown in (1) and (2).

)(' bCostcurCostnormr −= (1)

resCrr /)'255(−= (2)
A bCost means the best trip time experienced by the
forward ants traveling the link between a next node, n,
and a destination node, d. A curCost means the current
trip time on the same path. A bCost is a local traffic model
data stated previously in section 3.1. In equation (1), a
difference between curCost and bCost is normalized to a
predefined reinforcement level. Currently, we define it a
byte size level. Therefore, the difference, r’ in (1), has a
value from 0 to 255. But, r’ just indicates the absolute
difference of a trip time regardless of relative quality of
paths. To solve the problem, resolution value, Cres in (2),
is induced to weigh r’. If the bCost that is used to get r’
increases, Cres decreases simultaneously. As the amount of
varying Cres in proportion to bCost is somewhat heuristic,
we parameterized it to change easily. A calculation flow
of Setrfm block is shown in Fig. 4. If a bCost is not
accessed during the given time threshold, it is initialized.
This helps to raise the reliability of a bCost. The limitation
of a curCost by size threshold also provides the reduction
of calculation time and hardware size.

r’ = 0
curCost > bCost N

Y

curCost

curCost > Th.

cost size
threshold

Y
r’ = 255

r’ = norm(curCost-bCost)
N

bCost < Th.

bCost time
threshold N

Y

Shifter

r

Cres

Figure 4. Calculation Flow of a Reinforcement Value

3.4. Uprtable

A routing table is refreshed in this block according to an
ant’s routing information and a reinforcement value. The
probability entries that have the same destination node are
updated using a following rule.

fnNfn
PrPP

PrPP

ndndnd

fdfdfd

≠∈
∗−←

−∗+←

,,
)256/(

)256/)255((

 (3)

In equation (3), r is a reinforcement value and N is a set of
neighborhood nodes. f is a node that a current ant has
visited, and n means other neighborhood nodes except f. d

is a destination node. Pfd indicates a probability of the
routing path from f to d, and it increases in proportion to r.
Whereas, Pnd, the probabilities of routing paths to reach d
except the path via f in a current node, decrease by the
certain amount that is dependent on r. A procedure to
accomplish equation (3) is shown in Fig. 5.

next node = f

X

-

X

+
N

Y

r

P from next nodes to a destination node

Shifter Shifter

PfdPnd

P : Probability
f : Visited node by a current ant
n : Other nodes except f
d : Destination node of a current ant

Figure 5. Updating Procedure of a Routing Table

3.5. Topctrl

Topctrl block controls local functional blocks and other
glue logics through the results of parsing ant packets. A
control flow consists of FSM including five stages.
● Start: If the ant function is allowed to activate, a

forward ant is generated, and transmitted to a next
node.

● Forwarding: The forwarding operation happens if a
current node is not a stating node. pNodeOdr and
tNodeNum of a current forward ant increase by one.
Also, current node address and time, intNode and
visTime, are inserted into the ant. Then the new ant is
sent to a next node selected at a Sellink block.

● Destination: If a current node is a destination node, a
forward ant changes into a backward ant as soon as
pNodeOdr and tNodeNum increase. The backward
ant starts to return to a source node with the routing
information.

● Backwarding: A backward ant traces along the nodes,
which a forward ant has visited, until it arrives at a
source node. On the way of returning to the source
node, a routing table and local traffic model at the
visited nodes are changed to some degree according
to the routing information.

● Source: If a backward ant reaches a source node, the
ant vanishes after updating a routing table and traffic
model of the node.

Before the decision of aforementioned states, there are
two checkpoints to select proper states. One is a circle or
not. A circle means a loop of routing path, and causes an
ant to have wrong routing information. Therefore, circle
must be checked by the comparison of current node
address with visited node address. If a circle occurs,

Topctrl removes a current ant, rather than sending it back
to a previous node. The reason for that is certainly for
hardware efficiency. The other checkpoint is the total
number of visited nodes (tNodeNum). In section 2, we
stated that the size of tNodeNum is limited to ten. If
tNodeNum reaches the predefined maximum number, a
current node becomes a destination. Therefore, a current
forward ant changes into a backward ant. We think that
the limitation of the number of visited nodes will not
induce serious degradation of performance because many
ants are generated periodically at all nodes enough to
compensate the loss due to it. The control flow is depicted
in Fig. 6 to clarify the above explanations.

Source
Operation

Dest.
Operation

START ENDType : forward ant
sNode : a stating node
dNode : a destination node
pNodeOdr : 0
tNodeNum : 0
intNode : a stating node addition
visTime : a current time addition

Type : No change
sNode : No change
dNode : No change
pNodeOdr : +1 as passing a node
tNodeNum : +1 as passing a node
intNode : a current node addition
visTime : a current time addition

Sellink
activation

Sellink
activation

Type : backward ant
sNode : No change
dNode : No change
pNodeOdr : previous value + 1
tNodeNum : previous value + 1
intNode : a destination node addition
visTime : a current time addition

Type : No change
sNode : No change
dNode : No change
pNodeOdr : -1 as passing a node
tNodeNum : No change
intNode : No change
visTime : No change

Forward
Operation

Backward
Operation

Setrfm,
Uprtable
activation

Setrfm,
Uprtable
activation

current node
= dNode

current node
= sNode

terminate ant packet

Figure 6. FSM of Topctrl

4. PERFORMANCE EVALUATION

First, we compare the proposed routing algorithm with the
original AntNet on a topology presented in Fig. 7 (a). The
C-level simulation is used to compare results for
satisfying identical conditions. The comparison results are
shown in Fig. 7 (b). The first mode in Fig. 7 (b) is a case
where the routing time between nodes is equally
distributed except for one path, and the second is to have
the same routing time for all paths. According to the
simulation results, we can confirm that the routing scheme
of the proposed structure is the same or superior to the
original under static environments. Convergence time
means the number of an ant’s routing cycles used to
choose a routing path that has a predefined dominant
probability over others. And then, RTL-level simulation
results in the case that a routing time from node 0 to node
1 is shorter than that of others are given in Fig. 7 (c). In
real environments, time information at all nodes is
synchronized by a network time protocol such as SNTP.
However, we imposed it directly using a testbench file.
P13 (the upper graph in Fig. 7 (c)) means the probability of
routing path via node 1, and P23 (the lower one) is the
probability of routing path via node 2. P13 increases
gradually as ants repeat their action. But, P23 decreases

inversely. If P13 and P23 reach a steady state, the state is
preserved unless routing time changes. Most of
simulations with diverse routing times give similar results
except for the time of convergence to a steady state. The
gate counts of core blocks excluding external interface
logics are about 160K under 100MHz operating clock and
TSMC 0.25µm CMOS technology. The used memory is
(m*n+3*n)bytes, where m is the number of
neighborhoods nodes, and n is that of destination nodes.

피어-투-피어1

 0

2

3

Source Node

Destination Node

0

50

100

150

200

250

300

350

1 2
Mode

C
on

ve
rg

en
ce

 ti
m

es Original AntNet
Hard-wired AntNet

(a) Test node topology (b) Comparison results

P13

P23
(c) RTL-level results

Figure 7. Simulation Results

5. CONCLUSION

In this paper, we presented a hardware architecture based
on the AntNet. It can provide the high reliability of
routing information by reducing and regularizing the
processing time of ants. Simulation results show that the
architecture selects a proper path not only faster, but also
more uniform than the original AntNet under various
environments. As there are some heuristic points in the
AntNet until now, we have developed the architecture that
can be parameterized and modified easily for future works.

6. REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for
Optimization from Social Insect Behavior”, Nature, vol. 406, pp.
39-42, July 2000.
[2] G. D. Caro and M. Dorigo,“AntNet: Distributed Stigmergetic
Control for Communications Networks”, Journal of Artificial
Intelligence Research 9, pp. 317-365, Dec. 1998.
[3] K.M. Sim and W.H. Sun,“Multiple Ant-Colony Optimization
for Network Routing”, Proc. of the First International
Symposium on Cyber Worlds, pp. 277-281, Nov. 2002.
[4] Y. Yang, A. N. Zincir-Heywood, M. I. Heywood, and S.
Srinivas, “Agent-Based Routing Algorithms on a LAN”, Proc.
of the IEEE Canadian Conference on Electrical & Computer
Eng., vol. 3, pp. 1442-1447, May 2002.

[5] M. Dorigo, M. Zlochin, N. Meuleau, and M. Birattari,
“Updating ACO Pheromones using Stochastic Gradient Ascent
and Cross-Entropy Methods”, Proc. of the EvoWorkshops2002,
LNCS 2279, pp. 21-30, Springer, 2002.

