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ABSTRACT 
 
The AntNet is an indirect communication algorithm for 
adaptive routing in a network. A unit used for adaptive 
routing is called an agent. The AntNet consists of agents 
whose behaviors look like those of ants, and has many 
characteristics such as adaptability, survivability, and self-
organization. These features are very attractive to today’s 
network environment. The function of an agent dominates 
the efficiency of the AntNet, and has deep relation with 
the processing time of an agent in a router. Therefore, it is 
necessary to handle agents using a dedicated hardware for 
the minimization and regularity of the processing time. In 
this paper, the efficient architecture that can be easily 
adapted to a hard-wired form for an AntNet-based routing 
is developed, and verified by the comparisons with the 
original AntNet and RTL-level simulations. The results of 
simulation show that the proposed architecture is suitable 
and efficient to realize adaptive routing based on the 
AntNet. 

 
1. INTRODUCTION 

 
Internet packet data has increased rapidly in recent years. 
Therefore, it is not so hard to imagine serious network 
data congestion in the near future. Gigabit routers and the 
effective use of resources by differentiating services could 
somewhat alleviate such a problem but it cannot be solved 
absolutely. Intelligent routing may be another solution for 
the aforementioned problem. Especially, routing methods, 
based on bio-inspired mechanisms, have many merits such 
as adaptation, survival capacity, and self-organization [1]. 
The system that includes these features can be easily 
adapted to new environments, and be stable in diverse and 
dynamic conditions, and do all by itself without central 
controls. The AntNet is an adaptive and distributed 
routing algorithm applying ant colony organization [2]. It 
mimics the activities of social insects such as making 
swarms and communicating with each other by chemical 
substance called pheromone. An ant is a kind of an agent 
packet used to investigate network conditions with a 
round trip from a source to a destination node. There are 

two types of ants: forward ants and backward ants. A 
forward ant collects network information on the way of 
going to a destination node. When the forward ant reaches 
the destination node, it becomes a backward ant. The 
backward ant returns to the source node that the forward 
ant is generated.  While returning to the source, the 
backward ant updates outdated routing information of the 
nodes that the forward ant has visited with information 
collected by the forward ant. In this way, ants 
communicate each other about the quality of routing paths 
through information stored in the nodes. It is proved that 
the AntNet is superior to other algorithms in many 
respects such as routing performance, adaptability, and 
stability under most of traffic distributions [2,3,4]. But, its 
efficiency is fully dominated by quality of collected 
information. An ant’s trip time is the most important 
factor to determine it. Therefore, it is necessary to 
minimize and regularize the processing time of an ant 
packet in each node to get accurate and pure trip time. 
Also, a rapid update of routing information is essential to 
select a correct routing path of normal data packets. 
According to consider these requisites, the block to 
process ants should have a hard-wired form like 
forwarding or classification of packet in a router as 
possible. 

This paper presents a hardware architecture to realize 
an AntNet-based routing in practical environments. The 
original AntNet algorithm is modified to fit a hard-wired 
form with minimizing the performance degradation and 
hardware overhead. The proposed architecture and its 
detail descriptions are presented in section 2 and 3 
respectively, and the performance evaluation is given in 
section 4. The conclusion of this paper is presented in 
section 5. 
 

2. PROPOSED ARCHITECTURE 
 
The proposed architecture is mainly based on the AntNet 
algorithm. The block diagram of the proposed architecture 
is shown in Fig. 1. It consists of four major sub-blocks 
excluding external interface blocks. The major blocks are 
designed only to handle ant packets defined in Fig. 2. The 
detailed descriptions of an ant are as follows: 



● Type indicates whether the packet is a forward ant or 
a backward ant. 

● sNode denotes the address of the start node that an 
ant is produced. 

● dNode denotes the address of the end node to which 
an ant goes. 

● pNodeOdr indicates the order of the nodes that an 
ant visits. The number starts from zero. 

● tNodeNum indicates the total number of the nodes 
that an ant visits. 

● intNode denotes the address of the nodes that an ant 
visits. 

● visTime indicates the time that an ant arrives at the 
node. 

In contrast to the original AntNet, we can remove stack 
memories at all nodes using the proposed ant’s structure 
including all the data needed for evaluating a routing path. 
An ant packet’s length is fixed to eighty bytes. It is very 
useful to fix ant’s size in many cases. Currently, we limit 
the total number of the nodes that an ant visits to ten. The 
ant’s information except a dNode is set automatically on 
the way of routing, but the dNode is initiated and fixed at 
a starting node. The dNode can be determined by a 
manual mode or random mode. In a manual mode, a user 
can directly configure the dNode with a predefined 
address table. Otherwise, the dNode is randomly 
determined according to the destination address 
information of normal data packets. 
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Figure 1. Block Diagram of the Proposed Architecture 
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Figure 2. Ant Packet Structure 

 
3. FUNCTIONAL DESIGN 

 
3.1. Routing table and Traffic model 

 
The basic structures of a routing table and a traffic model 
are nearly the same as those of the original AntNet. There 
are two data structures at each node, one is a local traffic 
model, and the other is a routing table. A local traffic 
model is a kind of statistical model that represents a traffic 
distribution over networks. A routing table contains the 
entries, which express the probabilities to choose a next 
node. A next node is selected stochastically in proportion 
to the probabilities of a routing table. We set a probability 
to one byte size for efficient calculations. Therefore, each 
entry has a value whose range is from 0 to 255. A routing 
table consists of two-dimensional structures. Each row 
represents an adjacent node, and each column represents a 
destination node. If a node has ten neighborhood nodes 
and twenty destination nodes, the node needs to have a 
routing table whose size is (10, 20). The summation of all 
probabilities per a column must be 255. The total number 
of destination nodes can be limited to keep down memory 
usage, and to lead an efficient update of routing tables. 
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Figure 3. Selection of a Next Node 

Sellink is a unit to select a next node using the probability 
values of a routing table at a current node. Its detailed 
functional procedure is depicted in Fig. 3. First, Sellink 
requests the probability data of a routing table to external 
memory, and carries the data from the memory. The data 
is accumulated to registers in order. If a current node has 
ten neighborhood nodes connected directly, it is needed to 
have ten byte registers. The accumulated registers are 
compared with a pseudo-random value produced by a 
LFSR (Linear Feedback Shift Register) one by one. After 
all registers are compared, a next node is determined. 
Finally, the selected node is translated to a real IP address 
through a predefined address table. 
 
3.3. Setrfm 
 
It is essential to estimate the relative goodness of each 
link for adaptive routing in dynamic network 
environments. A reinforcement value allows us to 



speculate a quality of each link, and set the amount of 
varying a probability of a routing table. Though several 
factors are induced to get a reinforcement value [2,5], we 
only use the trip time of ants. The equation for a 
reinforcement value, r, is shown in (1) and (2). 

)(' bCostcurCostnormr −=                      (1) 

resCrr /)'255( −=                            (2) 
A bCost means the best trip time experienced by the 
forward ants traveling the link between a next node, n, 
and a destination node, d. A curCost means the current 
trip time on the same path. A bCost is a local traffic model 
data stated previously in section 3.1. In equation (1), a 
difference between curCost and bCost is normalized to a 
predefined reinforcement level. Currently, we define it a 
byte size level. Therefore, the difference, r’ in (1), has a 
value from 0 to 255. But, r’ just indicates the absolute 
difference of a trip time regardless of relative quality of 
paths. To solve the problem, resolution value, Cres in (2), 
is induced to weigh r’. If the bCost that is used to get r’ 
increases, Cres decreases simultaneously. As the amount of 
varying Cres in proportion to bCost is somewhat heuristic, 
we parameterized it to change easily. A calculation flow 
of Setrfm block is shown in Fig. 4. If a bCost is not 
accessed during the given time threshold, it is initialized. 
This helps to raise the reliability of a bCost. The limitation 
of a curCost by size threshold also provides the reduction 
of calculation time and hardware size. 
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Figure 4. Calculation Flow of a Reinforcement Value 

 
3.4. Uprtable 
 
A routing table is refreshed in this block according to an 
ant’s routing information and a reinforcement value. The 
probability entries that have the same destination node are 
updated using a following rule. 
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In equation (3), r is a reinforcement value and N is a set of 
neighborhood nodes. f is a node that a current ant has 
visited, and n means other neighborhood nodes except f. d 

is a destination node. Pfd indicates a probability of the 
routing path from f to d, and it increases in proportion to r. 
Whereas, Pnd, the probabilities of routing paths to reach d 
except the path via f in a current node, decrease by the 
certain amount that is dependent on r. A procedure to 
accomplish equation (3) is shown in Fig. 5. 
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Figure 5. Updating Procedure of a Routing Table 

 
3.5. Topctrl 
 
Topctrl block controls local functional blocks and other 
glue logics through the results of parsing ant packets. A 
control flow consists of FSM including five stages. 
● Start: If the ant function is allowed to activate, a 

forward ant is generated, and transmitted to a next 
node. 

● Forwarding: The forwarding operation happens if a 
current node is not a stating node. pNodeOdr and 
tNodeNum of a current forward ant increase by one. 
Also, current node address and time, intNode and 
visTime, are inserted into the ant. Then the new ant is 
sent to a next node selected at a Sellink block. 

● Destination: If a current node is a destination node, a 
forward ant changes into a backward ant as soon as 
pNodeOdr and tNodeNum increase. The backward 
ant starts to return to a source node with the routing 
information. 

● Backwarding: A backward ant traces along the nodes, 
which a forward ant has visited, until it arrives at a 
source node. On the way of returning to the source 
node, a routing table and local traffic model at the 
visited nodes are changed to some degree according 
to the routing information. 

● Source: If a backward ant reaches a source node, the 
ant vanishes after updating a routing table and traffic 
model of the node. 

Before the decision of aforementioned states, there are 
two checkpoints to select proper states. One is a circle or 
not. A circle means a loop of routing path, and causes an 
ant to have wrong routing information. Therefore, circle 
must be checked by the comparison of current node 
address with visited node address. If a circle occurs, 



Topctrl removes a current ant, rather than sending it back 
to a previous node. The reason for that is certainly for 
hardware efficiency. The other checkpoint is the total 
number of visited nodes (tNodeNum). In section 2, we 
stated that the size of tNodeNum is limited to ten. If 
tNodeNum reaches the predefined maximum number, a 
current node becomes a destination. Therefore, a current 
forward ant changes into a backward ant. We think that 
the limitation of the number of visited nodes will not 
induce serious degradation of performance because many 
ants are generated periodically at all nodes enough to 
compensate the loss due to it. The control flow is depicted 
in Fig. 6 to clarify the above explanations. 
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Figure 6. FSM of Topctrl 

 
4. PERFORMANCE EVALUATION 

 
First, we compare the proposed routing algorithm with the 
original AntNet on a topology presented in Fig. 7 (a). The 
C-level simulation is used to compare results for 
satisfying identical conditions. The comparison results are 
shown in Fig. 7 (b). The first mode in Fig. 7 (b) is a case 
where the routing time between nodes is equally 
distributed except for one path, and the second is to have 
the same routing time for all paths. According to the 
simulation results, we can confirm that the routing scheme 
of the proposed structure is the same or superior to the 
original under static environments. Convergence time 
means the number of an ant’s routing cycles used to 
choose a routing path that has a predefined dominant 
probability over others. And then, RTL-level simulation 
results in the case that a routing time from node 0 to node 
1 is shorter than that of others are given in Fig. 7 (c). In 
real environments, time information at all nodes is 
synchronized by a network time protocol such as SNTP. 
However, we imposed it directly using a testbench file. 
P13 (the upper graph in Fig. 7 (c)) means the probability of 
routing path via node 1, and P23 (the lower one) is the 
probability of routing path via node 2. P13 increases 
gradually as ants repeat their action. But, P23 decreases 

inversely. If P13 and P23 reach a steady state, the state is 
preserved unless routing time changes. Most of 
simulations with diverse routing times give similar results 
except for the time of convergence to a steady state. The 
gate counts of core blocks excluding external interface 
logics are about 160K under 100MHz operating clock and 
TSMC 0.25µm CMOS technology. The used memory is 
(m*n+3*n)bytes, where m is the number of 
neighborhoods nodes, and n is that of destination nodes. 
 

피어-투-피어1

 0

2

3

Source Node

Destination Node

0

50

100

150

200

250

300

350

1 2
Mode

C
on

ve
rg

en
ce

 ti
m

es Original AntNet
Hard-wired AntNet

 
(a) Test node topology                (b) Comparison results 
 

P13

P23  
(c) RTL-level results 

Figure 7. Simulation Results 

 
5. CONCLUSION 

 
In this paper, we presented a hardware architecture based 
on the AntNet. It can provide the high reliability of 
routing information by reducing and regularizing the 
processing time of ants. Simulation results show that the 
architecture selects a proper path not only faster, but also 
more uniform than the original AntNet under various 
environments. As there are some heuristic points in the 
AntNet until now, we have developed the architecture that 
can be parameterized and modified easily for future works. 
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