AN EFFICIENT ABR SERVICE ENGINE FOR ATM NETWORK

Youngin Choi

Display Division
LG Electronics Inc.
Kumi, Korea

ABSTRACT

In recent ATM forum activities, considerable efforts
have been focused on an Available Bit Rate (ABR)
service, which enables maximal link utilization in the
ATM network. In this paper, we present an efficient
architecture of an ABR service engine, which includes all
functions required in the ABR service algorithm. The new
architecture of the ABR service engine is very small in
size and high speed by computing the congestion control
information without cell delay.

I. INTRODUCTION

Since most network applications cannot predict their
own bandwidth requirements, they usually require a service
that dynamically shares the available bandwidth among all
active users. Such a service is called an ABR service
[1,2]. The important characteristics of an efficient
congestion control algorithm for the ABR service include
fast reaction to momentary congestion due to burst traffic,
maximal link utilization, fairness, and low hardware
complexity requirement.

Various flow control schemes have been proposed for
the ABR service, and they can be classified into two
classes, the end-to-end rate-based schemes and the
link-by-link credit-based schemes. in late 1994, the ATM
forum selected the rate-based control [3,4,5] as the flow
control scheme for the ABR service due to its simplicity.
The congestion control lies at the heart of the general
problem of traffic management of high-speed switching
networks such as the ATM.

The congestion arises when the incoming traffic to a
specific link is heavier than the outgoing link capacity, in
which case the buffer could overflow, causing an

excessive queuing delay or even a deadlock in the

network. For this problem, the simple, scalable and stable
Explicit Rate (ER) allocation algorithm [6] is developed.
In [6], the rate-based control information of the ABR
service engine for congestion control is an Explicit
Forward Congestion Indication (EFCI) marking,
Relative-rate markings and an Explicit Rate (ER) marking.
The Relative-rate markings are a No Increase (NI) and a
Congestion Indication (CI).

0-7803-6741-3/901/$10.00 © 2001 IEEE

Sungho Kang

Song C hong.

Dept. of Electrical Engineering Dept. of Electronic Engineering
Yonsei University
Seoul, Korea

KAIST
Daejon, Korea

Previous architectures are slow in performance speed
and have complex I/O interface due to the access of
external memory. In this paper, to overcome the problems
of the hardware complexity and the speed, complex
computation is reduced by removing per-VC accounting
and external memory access. Also, a periodical ER
computation is used to reduce the hardware and the
occurrences of a cell delay since the periodic scheme
provides sufficient time for an ER computation. the new
ABR service engine only writes the prepared ER in the
RM cell without the cell delay whenever an RM cell
arrives at the cell decoder. It can achieve simpler and
faster architecture without affecting performance.

II. ABR SERVICE ALGORITHM

To implement an efficient architecture, a simple,
scalable and stable ER allocation algorithm is devised.
The pseudo code for the ER computation is shown in
Figure 1. Each RM cell contains a rate at which the
sender would currently like to transmit data. Such a value
is called an Explicit Rate (ER). As the RM cell passes
through to the receiver, the congested switches may reduce
the ER. That is, the ER value is used to limit the
Allowed Cell Rate (ACR) of a source to a specific value.
A QLa. is the average of the queue lengths during T
seconds, which is a multiple of unit time that takes a cell
to pass through the ABR service engine. A and B are
coefficients for the ER formula and have two values in
order to react quickly when starting the ATM, and g is
the criterion in selecting of A and B. qr is the target of
the queue length which must be maintained. ERpe is the
ER value computed by the ER engine at a previous time.
Since the ER is computed by the periodical scheme, the
QC correction process is added. A QC represents the
number of the connection that can cause queuing in each
switch.

To predict the QCi, the source number of QC, the
number of forward RM cells is WXRM(CCR)/Npm per
connection at the input where NRM is the number of
cells per forward RM cell and W is the interval. The QC
can be predicted by continuous summations of inverse
values of the average of the forward RM cells for all

261

connections. The pseudo-code for QC prediction and QC
correction is shown in Figure 2. Since QC may be
oscillated according to W periods, QC prediction includes
the feature of a low pass filter for smoothing the
oscillation. A QC is corrected by identifying the Total
Connection (TC). When a new connection occurs, the
connection is assumed to relate with queuing [6]. A is an
averaging factor between 0 and 1.

if (every Trped W

QL, = sum of queue lengths / queue count
if (gH< queue length){
if (system start){
A=A0,B=B0
else {
A=AlB=Bl1
}

}
QQEmp;_ Qg‘l mat| on Qgrrector

ER=E&N—W(Q&V ~Qlg)= o 2 (Qle-a)

ER is limited between link-speed and 0

Figure 1. ER computation algorithm.
If (every W period) { .
QC _QCpr:kus QC
QC= QC x A+ QC, x (1 A) 0< x<1
QCis hmlted between total TCand 0
QCcorrcctot QC =0

if (increase TC) {)
QC orrector = RC corrector T the increase of TC
}

Figure 2. QC prediction and QC correction algorithm

- The switch may set the EFCI in an data cell header as

it passes forward. This causes the destination end system
to set the Congestion Indication (CI) bit in a backward
RM cell. In addition, the switch may directly set the CI
or No Increase (NI) bit of a passing RM cell. If the bit
is set in a forward RM cell, then it will remain in the
corresponding backward RM cell when a turnaround occurs
at the destination. To achieve a result most rapidly, a
switch may generate a backward RM cell with the CI or
the NI rather than waiting for a passing backward RM
cell. If an input cell is a backward RM cell sent by a
source and it satisfies the CRC check, the ABR service
engine prepares to write the congestion information in the
RM cell. After writing the information, the ABR service
engine generates a new CRC value for the modified RM
cell.

262

III. ABR SERVICE ENGINE ARCHITECTURE

The architecture of the ABR service engine is shown in
Figure 3. The QC estimation unit periodically computes
the QC for the ER engine, and the ER engine periodically
computes a new ER, which will be written in the RM
cell. A timer periodically enables them to compute. A cell
decoder detects an RM cell during a cell flow and reads
the information for each module, but the cell encoder
writes new congestion control information in the cell. The
EFCI is marked in the data cell, but the relative-rate and
the ER are written in the RM cell. To detect an error in
the ATM traffic, the cell decoder has a CRC checker. On
the other hand, the cell encoder has a CRC generator for
the modified RM cell. The Universal Test. & Operations
Physical Layer Interface for ATM (UTOPIA) [7] that
defines the interface between the physical layer and the
upper layer modules such as the ATM layer is obeyed in
the 1/0 of the cell decoder and encoder.

. Egress Cell Out

... Egrem
ccriMCR EFCH
W Period
| Queuing C i
Total Connection Estimation Unit |'
Queue Length
Average Uint Timer
Queue Length ® Queueing
Queue Jength Connection,
nl:.llg:" Explicit Rate
Engine T Period
nifct

Explicit Rate

i} cre
Generator
Ingress Celi Out |

""" ingress Cell Decoder and Encoder "7

crRc |
Wrmr Duoder Checker H

Ingress Cell In

MCR, m

Figure 3. Architecture of ABR service engine.

As the main number system of the ABR service engine,
the 32-bit floating-point, IEEE 754 single precision, is
adopted to reduce errors in complex computations. A two's
complement and a rate-format number systems are adopted
to achieve at a simple architecture. So other formats must
be converted into the floating-point formats for internal
computation. The rate-format [1} is represented in a binary
floating-point representation employing a 5-bit exponent
(e), a 9-bit mantissa (m) and a 1-bit nonzero flag (nz).
That is, rate-format is [2°(1+m/512)] X nz (cells/seconds).

The I/O bus interface controller can read and write the
parameter values in the register file. Therefore, the proper
order of computation utilizing all units at the same time
can reduce the computation time. The time needed to
obtain the ER is nearly the same as the time needed to
pass three dividers. This process is repeated until the ER

computation is completed.

Parameter Value
ER Engine
Controller
(FSM)
Number System
Control c Converter
Signal Results

Floationg Poiht
Multiplexer | Numbers
l ¥

Registers

32 bit 32 bit
Floating Floating

Point Point

Adder Mutltiplier

__4|

I

32 bit
Floating
Point
Divider

T

M

Demultiplexer

[

Figure 4. ER engine.

Figure 4 shows the architecture of the ER engine. The
process of computing the ER in the ER engine starts
every T period. Since T is a comparatively long time in
arithmetic, ER computation can be sufficiently completed
during the T period. After the ER computation, the new
ER is updated at a register periodically. The ER engine
requests a number of floating-point arithmetic units,
because the ER formula has four multiplications, three
divisions, and five additions. Modules requiring a number
of arithmetic operations have only one unit for each
arithmetic operation and reuse it. This method makes the
control logic more complex and the computation slower.
But the architecture using all arithmetic units like the ER
formula is more complex than one using a unit for each
arithmetic operation, and the ER" computation time of the
reuse scheme is sufficient due to a periodic and parallel
scheme. Since each arithmetic unit operates independently
in the ER engine, the parallel computation is possible.
Therefore, the proper order of computation utilizing all
units at the same time can reduce the computation time.
The time needed to obtain the ER is nearly the same as
the time needed to pass three dividers. MUX and
DEMUX are at each input and output of the arithmetic
units in order to implement the reuse scheme. This
process is repeated by the controller until the ER
computation is completed.

The ER cannot be higher than the link-speed. Finally,
the ER is prepared to be written in the RM cell after
being converted into the rate-format. Also, the ER engine
computes the value that QC estimation requires. This value
is obtained by multiplying ER by a comparison margin,
8. The ER eéngine requires a few parameters for the

computation. The constant values obtained by the
simulation are A, B, T and qr. External input values are
the sum of the queue lengths, the queue number for the
average of the queue lengths and the QC delivered from
the QC computation unit. The internal feedback variables
are the ER and the average of the queue lengths.

The QC estimation assumes the queuing in the output
port. Also, the QC estimation unit does not treat the
information of each connection individually but treat all
connections of an ABR «class at once. The former
complicates the control and wastes storage elements, but
the latter can prevent the problems. QC estimation unit is
divided into two parts, namely, a QC; accumulation and a
QC computation part. The QC estimation unit operates
every W period.

The QC: computation process begins whenever the RM
cell arrives at the ABR service engine, and QC, is reset
every W period. The QC; accumulation part is again
divided into a QC, accumulation condition comparison and
a QC accumulator. The QC; accumulation condition
comparison part compares & XER with the result taken
from the subtraction of the Minimum Cell Rate (MCR)
from the Current Cell Rate (CCR). CCR and MCR are
fetched from the forward RM cell, and & XER is sent
from the ER engine, i.e, CCR-MCR > ¢§ XER. To
simplify the architecture, an adder and a comparator are
the arithmetic units for a 16-bit rate-format that is simpler
than a 32-bit floating-point. Also, since & XER is a
floating-point, it must be converted into the rate-format.
Simultaneously, the QC; accumulator divides NrwW/W,
which is a constant computed by the simulation, by the
CCR that is converted into the floating-point. The QC;
accumulator. and the QC computation unit use the
floating-point number for precision due to the feedback of
QC, and QC. Since the floating-point division is slower
than other arithmetic units in speed, -QC; has to be
previously computed in order to be used in the QG
accumulator when the RM cell arrives at the ABR service
engine. After a division, the results of the QC
accumulation condition comparison and the CRC check for
detecting errors in the RM cell are prepared to accumulate
QC,, and they choose whether to use or discard the
division result in the QC, addition. The floating-point
division and addition can not be completed in a cell time.
It becomes a problem when the RM cell continuously
arrives. But since the division and the addition can
respectively be completed in a cell time, the used pipeline
solves the problem. That is, registers are inserted between
the divider and the adder in the pipeline scheme.

The block diagram of the QC estimation unit is shown
in Figure 5. The QC computation part acts the role of a
low pass filter feature which smoothes the extreme
variation of QC. The new QC is the sum of A ratio of

263

the previous QC and 1- A ratio of QC; that is measured
in the current section. Because A is a floating-point
number between O and 1, the exponent of A is a
constant. So, 1-A can be computed by a specific block
that has an inverter and a shifter. That is, 1-A is
obtained by inverting and normalizing the fraction part of
A. Though this scheme may cause trivial errors, it

guarantees sufficient precision for the QC computation.
" Besides, the block that has the inverter and the shifter is
faster and simpler than the floating-point adder. The QC
computation architecture is similar to the ER engine, but it
lacks a divider. While QC is computed, the QC
computation cannot sense a variation of Total Connection
(TC). That is, as TC increases, QC must increase as much
as the degree to which the variation of TC increases. The
TC variation obtained from the QC corrector during W
period is used in order to compute the next QC precisely.
Also, the QC correction is applied to QC used in the ER
engine. The last step of the QC computation is to limit
the QC, because it must be smaller than the TC. After
completing the computation, the QC is delivered to the
ER engine

& xER
from ER Engine

MCR. CCR from RM Cell Nan'W

'

Floating Point

16 bit 16 bit Converter

Rate-Format Rate-Format H

Comparator Adder : Floating
H Point

i Number of CCR

CCR-MCR

32bit

Floating
Point
Adder

32 bit
Flosting
Point
Divider

Accumulation Enable Signal

1o Compdhation |
Uint :

Registers

QC
Cumputation
Controller
(FSM)

32 bit

Floating
Point

Multiptier

QC Computation Module

I QC to ER Engine T Correction Vatue for QC

Figure 5. QC estimation unit

The cell decoder and the cell encoder directly treat
cells as the intermediate between a network and a system
outside of the architecture. It is divided into two nparts,
egress and ingress. Both parts are similar in function but
different in usage. That is, they read and write different
contents. The cell decoder and the cell encoder obey the
UTOPIA interface to transmit data among the network and
the CRC-10 to prevent error in an RM cell.

264

* —
Empty UTOPIA Interface Controller Enable
N Clock
Enable o

RM Decoder and Encoder

' ! RM Cell Detector

CelJHeader lPTI
CRC Checker Cell Buffer)—‘——‘
: 1 Egress Celi Out

T

CRC Result (EFCI) MCR CCR

soC EFCI Marker

Egress Cell In

Figure 6. Egress cell decoder and encoder

The cell decoder receives the latest information from
the RM cell and checks the CRC to decide whether the
information is correct or not. This information -is sent to
the QC estimation unit. The cell decoder mainly operates
along with the QCl accumulator. The specific functions of
the cell decoder and the encoder are as follows. The cell
decoder recognizes whether the input is a data cell or an
RM cell. The transfer of a cell is synchronized by the
Start of Cell (SOC) signal of UTOPIA. This signal is
asserted when the data transfer path contains the first byte
of a cell. The Payload Type Indication (PTI) in a cell
header has information on cell types and EFCI congestion.
After the SOC is asserted, the cell decoder reads the PTI
in the cell header. When the PTI is "110", the input is an
RM cell. Otheriwise it is a data cell. The architectures of
the egress cell decoder and the. encoder are shown in
Figure 6. In the case of the data cell, if the network is
congested, the cell encoder will mark EFCI in the PTI of
the cell header. The EFCI value is obtained from
comparing the current queue length with gerci, which is
the congestion threshold that has been used for rate
control in the past. If the input is an RM cell, the
preparation for QC; computation is launched. The QCI
accumulator uses only the data of the RM cell that is at
the forward direction and sent by the source. The others
are ignored in the cell decoder. The cell decoder can
recognize the RM cell from a Direction (DIR) and a
BECN cell (BN) of a message type. After completing all
identifications, the cell decoder sends an RM identification
signal to the QC; accumulation part. The QC; computation
starts by asserting this signal. After the CCR and the
MCR are obtained from the RM cell one by one, these
are sent to the QC; accumulator. But if an error occurs
during the CRC check, all operations will be ignored.

The ingress cell decoder and encoder is similar to those
of the egress. But in the ingress, the cell encoder is more
complex than the decoder, because the cell encoder writes
three kinds of information about the NI, the CI and the

ER and generates a new CRC. The identification of the
RM cell is the same as that of the egress cell decoder
except for the direction. The ingress cell decoder deals
with not forward but the backward RM cell and reads ER
instead of CCR. This information is sent to the cell
encoder. After the rate-format adder adds the CCR of the
RM cell and the ER of the ER engine, the sum is
compared with the ER of the RM cell. That is, RM cell
(ER) > ER engine (ER) + RM cell (MCR). If this is
true, the cell encoder will write the sum in .the RM cell.
If the current queue length is greater than the threshold of
the congestion, the relative-rate will be set to wamn the
occurrence of a congestion to the source. The cell encoder
completes the marking for a rate control and generates a
new CRC. However, if an error occurs during the CRC
check, all ‘operations will be cancelled.

IV. RESULTS
The ABR service engine is implemented using 0.5
(ym) Samsung library. The number of gates are
35,693 and the number of I/O pins are 189,
respectively. The critical path of the engine is

20.51ns.
ac
\
i
T e ™
(a) Steady state of the ER
R
Ne—
6 sec M T :18166" ' - :ﬂm

(b) Steady state of the QC
Figure 7. Verification of the ABR Service Engine

In order to verify the ABR service engine, the input
and output data of the verification are obtained by the
program based on [6]. The inputs of the ABR service
engine are an egress cell, an ingress cell, a queue length
and a TC. The number- of simulation input patterns is
about 10,000,000. When the queue length is increased,
the queue length affects the ER and the QC. Since
the ABR service engine changes the ER value, the
queue can reach the steady state by the new ER
value. The ER ‘computation also reaches the steady
state. The TC is increased by a new connection.
The increase of TC is handled in the QC corrector,

and the corrected QC is used for the ER value to
maintain the steady state. The queue and the ER
value reach the steady state again. In spite of the

variation of inputs, the ABR service engine always reaches

the steady state as shown in Figure 7.

V. CONCLUSION

A new efficient architecture of the simple, scalable and
stable ER allocation algorithm for the ABR service is
proposed. The features of this architecture are as follows.
First, because of the usage of a periodic scheme, the
architecture of the ABR service engine is simple and the
cell delay is short. Second, the number system of the
arithmetic unit is the floating-point number for reducing
error due to the complicate computation. This number
system can guarantee the stable operation of the system.
Third, a QC corrector and a number system converter
solve the difficulty of the implementation. Consequently,
the ABR service engine can achieve a small-sized, simple
architecture with a low cell delay.

Acknowledgement
This work was supported by Samsung Electronics Inc.

References
[a] S. Sathaye, ATM forum Traffic
Specification, Version 4.0, Feb. 1996.
[b] F. Bonomi and K. W. Fendick, "The Rate-Based Flow
Control Framework for the Available Bit Rate ATM
Service," IEEE Network, vol. 9, no. 2, pp. 25-39, 1995.
[c] M. K. Wong and F. Bonomi, "A Novel Explicit Rate
Congestion Control Algorithm," Proc. of GLOBECOM,
vol. 4, pp. 2432-2439, 1998.
[d] A. Charny, K. K. Ramakrishman and A. Lauck, "Time
Scale Analysis and Scalability Issue for Explicit Rate
Allocation in ATM Networks," IEEE Trans. on
Networking, vol. 4, pp. 569-581, 1996.
[e] Song Chong, Sang-Ho Lee and Sungho Kang, "A
Simple, Scalable and Stable Explicit Rate. Allocation
Algorithm for MAX-MIN Flow Control with Minimum
Guarantee," IEEE Trans. on Networking, to be published.
[f] "UTOPIA specification Level 1," The ATM forum
Technical Committee, Version 2.01, March 21, 1994,

Management

265

