]

Reprint from IASTED Int. Conf. on Ap
(AMSO' 95), June 1995, Cancun. Mexico

piied'Modeling, Simulation and Optimization [

Automatic Code Generation for Simulators using
Domain Specific Automatic Programming Techniques

Sungho Kang,
EE Dept.
Yonsei University
Seoul, Korea
e-mail: shkang@bubble.yonsei.ac.kr

Abstract

The Automatic Simulator Generation System (ASG)
is the first CAD tool which can automatically generate
simulators and multi-valued simulation models, using do-
main specific automatic programming techniques. ASG
can be used to develop new simulators, to upgrade exist-
ing simulators, and ‘to generate multi-valued simulation
models. This system represents a significant impact on
simulation automation by providing the same environ-
ment for model generation and simulation.

Key words: CAD tool, Simulation, Simulator generation
system, Domain specific programming.

1 Introduction

Automatic programming is concerned with methods
for selecting programming constructs for: specification
implementation, how to utilize fragmentary information,
how to synthesize code from examples of the desired be-
havior, and how to utilize domain knowledge [1]. In
domain specific automatic programming systems, which
restrict the application domain [2], either the domain
knowledge can be providéd by the user as a part of
the interactive specification process, or it may initially
exist in the system. The methodology of representing
domain knowledge, and the interaction between the do-
main knowledge and the programming knowledge, are
dictated by the specific application domain. There have
been some successful applications of domain specific au-
tomatic programming [3,4]. The concept of automatic
code generation in the CAD area was introduced as an
application of automatic functional model generation in
1979 [5]. However, until recently, functional elements
have been developed exclusively through a knowledge in-
tensive manual design process which is time consuming
and error prone[6]. Recently, there have been several at-
tempts to use domain specific programming in the gen-
eration of functional models [6]-[8].

&

*Designated Contact Person

Stephen A. Szygenda;

and Youngmin Hur
Chairman’s Office, ECE Dept.
The University of Texas at Austin
Austin, Texas 78712

{szygenda@uts.cc, yhur@cerc}.utexas.edu

Applying domain specific programming techniques to
the design of simulators, has resulted in the Automatic
Simulator Generation System (ASG). ASG is the first
CAD tool which develops simulators automatically. Us-
ing this system, simulation automation can be achieved
by providing the same environment for model generation
and simulation. Also, in the case where a certain simula-
tor is already being used, it can be used as an automatic
model generator in order to upgrade the capabilities of
the simulator.

Usually, a simulator is developed only once and used
extensively. However, there are several cases where au-
tomatic simulator generation is important. Firstly, when
designers design systems by using new design methodolo-
gles or by using new primitives which are not available in
a library, many simulators cannot directly simulate these
designs. In these cases a new simulator and/or new mod-
els are needed to verify these designs. Therefore, ASG
can be used to develop special purpose simulators. This
can be accomplished by users who are not familiar with
the internal structure of simulators. Secondly, it can be
used as an automatic multi-value simulation model gen-
eration system; since the generation of simulation mod-
els is the most difficult, error-prone and time-consuming
process in the development or upgrading of simulators.
Thirdly, A human programmer who has knowledge of
simulation, can optimize an AMG simulator by modi-
fying the code which was generated. The development
time for this approach is much shorter than manual gen-
eration, with the same efficiency.

2 Automatic Simulator Generation System

The Automatic Simulator Generation System (ASG)
is a tool which generates simulators automatically, using
domain knowledge. There are 4 main steps that must
be performed in this process. Specification is the pro-
cess of acquiring all the necessary information about a
target simulator. Design is the process of implementing
the given specification. Refinement is the process of pro-

-
Cony -

'

ducing the code. Finally, verification is the process used
to check the correctness of the generated programs. The
global configuration of the ASG is shown in Fig. 1. This
includes: User Interface, Preprocessor Generator, Model
Generator, Evaluator Generator, and Merger.

Generator
Model T
| i Target
Generator Merger Simulator
User Interface
Evaluator
Generator

Figure 1: Automatic Simulator Generator

The User Interface i1s an interactive query system
which allows users to easily describe the specification, to
make decisions, and to override defaults that the system
provides. It requires various types of information about
the desired simulator. It has a simulator specification
phase and a library specification phase. The simulator
specification phase acquires the details of the target simu-
lator, such as: input file descriptions, evaluation schemes,
the number of logic values, etc. The library specification
phase handles the basic elements in the library and up-
dates new models. In order to update the new models,
ASG handles the user’s specification of models. Since
there are many ways to describe the various models, the
User Interface supports: schematics (OCT [9,10]), hard-
ware description languages (SHDL [6], VHDL [11], and
TDL [12]), netlists, boolean equations, and truth tables.
When the user requests a new model, the system displays
all available models and the user may use one of these
library models. The block diagram of the User Interface
subsystem is shown in Fig. 2.

Schematic o Sch i ™ Levelized
o Ot Netlist Generator I Nediists
T™L Netlist Generator
|—e{ Control Flows
Coatrol Flow
Generator
SHDWVHDL [—*1 Parser
G::nemor | m——
Boolean) Bootean Equati
Equations T —~
Truth Teans! f "
Table Truth Tables

Figure 2: User Interface

From the schematic description, a net list is gener-
ated with the help of the OCT environment. A netlist
can also be generated from the hardware description lan-
guages: Simulation Automation System (SAS) Hard-
ware Description Language (SHDL), VHDL, and the
Tegas Description Language (TDL). These descriptions
are parsed, and passed onto the Netlist Generator, which
generates the levelized netlists. SHDL and VHDL are
also used to describe behavioral domain models. Parsed
behavioral descriptions - include control flows and equa-
tions. When truth table descriptions or Boolean equa-
tions are entered, they are translated into internal data
structures.

To implement efficient domain specific automatic
programming techniques, the following must be consid-
ered. Firstly, knowledge of the application domain must
be kept in some form of rule base to guide the program
synthesis. Secondly, the user interface of a domain spe-
cific automatic programming system must provide the
facilities to enable the users to input program specifica-
tions. Thirdly, due to the fact that the users’ specifi-
cations are usually incomplete or imprecise, the system
must be capable of figuring out the users’ intent. The
Knowledge Base includes basic simulation knowledge and
provides intelligent programming for the generation of
optimized code. The domain knowledge which is an in-
tegral part of the system, requires various details about
simulators.

3 Preprocessor Generator

The Preprocessor Generator generates the parser and
simulation vector translator for the simulator. For fault
simulation, the fault list and fault collapsing code are
generated. To describe the target designs, the input de-
scription format must be given. The system currently
provides TDL [12], VHDL [11], and SHDL [6] formats.
From the given options and input file names, the way to
use the simulator is decided. Then, using the given for-
mats of the input files, the parser and simulation pattern
translator are generated. The routines to set up the in-
ternal data structures are also constructed. In ASG, data
structures which are known to be efficient and general,
are used as defaults. According to the user’s specifica-
tion, additional data structures may be constructed. The
Element Table describes all elements used in the circuit,
including primary inputs and primary outputs. The Sig-
nal Table includes all signals in the circuit. The table
interactions are shown in Fig. 3.

The Element Table includes: element name, element
id, corresponding output signal id, the number of fanins,
fanin list, element type, etc. The element id is used as
an index to identify a specific element. Since there are

elements which have more than one output signal, an
output signal id is required. The fanin list includes the
signal ids of corresponding fanins. The Signal Table in-
cludes: signal name, signal id, corresponding element id,
the number of fanouts, fanout list, storage for simulation
values, etc. The fanout list includes the element ids of
corresponding fanouts.

Element Table

|

IEEER

element id

element name

—

element type

] _output signal id

[TTT]

fanin signal idy | |>{_fanin signal id |
{

number of fanins

fanin list]

|

Signal Table

‘- signalid

signal name

element id

—
———1

number of fanouts

_’j fanout signal id H fanout signal id i""

Figure 3: Table Data Structures

fanout list

4 Model Generator

The Model Generator is the most important part of
the ASG. It can generate various levels of simulation
models, including hierarchical models. To generate func-
tional models effectively, the following must be consid-
ered. Firstly, generated models should be able to eas-
ily interface to simulators. Secondly, generated mod-
els should be automatically verified. Thirdly, generated
models should be efficient when executed in a simula-
tor. Also, generated models should be concise in order
to minimize the usage of memory. Finally, the generated
models for sequential devices must have some mechanism
to allocate data for each instance of the element, includ-
ing internal memory states. The basic configuration of
the Model Generator is shown in Fig. 4.

Using the information from the Preprocessor, the
Model Generator synthesizes models written in the C lan-
guage. Since most parallel simulators use two word repre-
sentations, for three value simulation, two variables must
be used to represent a variable defined in the original
truth table or in the original boolean equations. Accord-

; <
| Base
Levelized i G Libeary
Netfists Signal Modeter Code Handler
Intermediate "
e s b—--(s.g;m Modeler
(" i
Intermediate 9
Truth Tables Signal Modeler

Figure 4: Block Diagram of the Model Generator

ing to the bit representations of a specific simulator, a
signal modeler generates expanded table or an expanded
equations. These expanded tables or expanded equations
are passed to an optimizer. The optimizer generates op-
timized equations from the expanded table or expanded
equations in order to reduce the size of the code.

The code generator generates the simulation model
using the optimized equations, module name, input
names, output names, and signal names. The inputs
of the code generator are the lists of control flows and
the set of equations which are attached to the control
flow. When the code generator generates the code, the
two main steps are to model the primitives and to model
the function, by synthesizing all the primitives. The code
generation algorithm is shown in Fig. 5.

generate a header
declare the variables
if the model is a sequential one
include state variables
initialize input parameters and state variables
for all control flows
generate the code according to the control flow
for all statements
find and replace the primitive type
include inputs and outputs
generate the code
connect to the other flows
generate the codes about the outputs of the model

Figure 5: Code Generation Algorithm

Initially, it generates a header which includes ‘com-
ments’ and a ‘model name’. Then, according to the num-
ber of inputs, number of state variables, and the number
of primitives, the variables are declared. Also, temporary
variables are declared. For sequential models, a memory

M . : .
h Ly
“ .) fow

ot

-

. is allocated to handle the internal states. Then, con-
trol flows are considered. The control flow types consid-
ered, are: ‘while loop’, ‘do loop’, ‘for loop’, and ‘if state-
ment’. This control flow includes a sequence of the state-
ments (equations) which includes: inputs, outputs, their
relationships and functionalities. The ‘C’ code is gen-
erated according to the functionality of each statement,
the matched primitive, and the matched input and out-
put variable names. These are continued until all control
flows have been considered. Finally, the code about the
interface of the outputs of the model is generated. This
is done by setting the output parameters and saving the
state variables.

For example, assume that we want to generate a sim-
ulation model for a two input AND gate, for three value
logic; where the three state values are L, H, and X, for
low signal value, high signal value and unknown value,
respectively. The signal modeler may assign; bit0 = 0
and bitl = 0 for L (00), bit0 = 0 and bitl =1 for H (10),
and bit0 = 1 and bitl = 1 for X (11). The generated C
model is shown in Figure 6.

/* name : AND2 ¥/

/* input : a, b &/

/* output : c */

/% date : March 1 1995 =/

AED2(i, o)
int i[2](2], ol[1]1C[2];
{

int a0, ail;

int b0, bil;

int cO0, ci;

a0 = i(0][0];

al = i[01[1]; ’

b0 = i[1](0];

b1 = if1]1[1];

cO0 = (a02bo);

c1 = ((aleb1)|(a12b0)| (aOtb1));

o[01(0] = cO;
o(0J[1] = c1;

Figure 6: 2 input AND Gate Model

5 Evaluator Generator

The Evaluator Generator generates the evaluation
routine which is the main routine for simulation. The
domain knowledge required, includes: delay models, the
number of logic values, hazard analysis, and simulation
algorithms.

In zero delay simulation, no timing models are re-
quired. Nominal delay simulation allows the assignment
of an average delay to each element type, and performs
limited hazard and race analysis. Rise and fall delay
simulation assigns different rising and falling times. Min-
max delay simulation can specify ranges in which the ele-
ments can respond. The number of logic values used are;
two values (0, 1), three values (0, 1, X), and five values
(0,1, U, D, E).

In fault simulation, the additional considerations are:
inserting fault effects, propagating fault effects, and de-
tecting fault effects. The fault simulation algorithms con-
sidered are; parallel fault simulation, concurrent simula-
tion, and parallel pattern single fault propagation simu-
lation.

For scheduling, the Evaluator Generator generates
code related to a hybrid time queue, by default, since it
is regarded as the most efficient. In this implementation,
there is only one time wheel, and the macro time queue
is implicitly implemented using a hashing method.

6 Merger

The Merger develops the simulator by compiling and
linking all generated code. The generated code from the
4 generators, shown in Fig. 1, are transformed into better
code using a C program beautifier. Using ‘yacc’ and ‘lex’,
a circuit description parsers is generated. The code and
circuit description parser are compiled. These are linked
together with the model library, in an archive format, as
shown in Figure 7.

If a user wants to upgrade the capability of a simula-
tor, new models are required. This is done automatically
by compiling the new models and adding them to an ex-
isting model library. Also, the names of the new models
are updated into the file which contains the list of ex-
isting models. The updated file is compiled and linked
together with an archive file containing all object files of
the simulator.

7 Results

Using the Automatic Simulator Generation System,
many simulators were developed. The results of simu-
lator generation on a Sun4/110, are shown in Table 1,
including characteristics of the simulators and simulator
generation time. For example, it took only 9.534 sec to
develop a 3 value zero delay simulator which has about
2000 lines of C. All simulators in the Table 1 use default
models (from 2 to 8 input gates). These results show
that automatic simulator generation is efficient and the
simulator generation time is far superior to that of expe-
rienced human programmers. '

{miti source P source Syntax Token
pamidvect | et file n finitions|| Definitions
} 1 i 1
C Beautifier J YACC LEX
{) i
pimicoe | | e | e || e |
r C Compiler J
1 1 P 1
object ST object object object
file { file n file n+1 file n+2
r Archive File Creator]

B primitive.c

lmodd(l).c l ToTmasssstess - Eml(n).c] modd(m»l).c]

Figure 7: Merger

Table 1: Simulator Generation Results

Simulator

Simulator Functions Generation Time
Logic 3 value, zero delay 9.534 sec
Logic 3 value, hazard analysis 13.142 sec
Fault Parallel algorithm 11.712 sec
Fault Concurrent algorithms 12.188 sec
Fault PPSFP algorithm 11.274 sec

Using the automatically developed simulator, sim-
ulation was executed. The simulation results on a
Sun4/110, are shown in Table 2, including: circuit size,
logic simulation time, fault coverage, and fault simula-
tion time. For these simulations, 1000 random patterns
were used.

Table 2: Logic and Fault Simulation Results

Circuit Sim. Time Fault . | Fault Sim. Time
[sec/pattern] | Coverage[%)] [sec/pattern]
c432 0.008 95.99 0.009
c499 0.015 97.49 0.032
c880 0.022 98.20 0.026
c1355 0.027 89.07 0.183
c1908 0.035 94.40 0.185
c2670 0.105 81.61 0.580
c3540 0.065 94.04 0.311
c5315 0.106 95.73 0.534
c6288 0.163 97.32 1.021
c7552 0.263 91.08 1.345

The results show that the performance of the gen-
erated simulator is satisfactory. The automatically gen-
erated simulator is slower than one generated by an ex-
perienced human programmer, since the machine gener-
ated code is simple and the there is a lack of domain
knowledge compared to the human knowledge. Also,
the manually coded simulator achieved efficiency by in-
cluding many time-saving heuristics. However, if more
domain knowledge about simulation is provided to the
Knowledge Base, more efficient simulators can be devel-
oped. Also, an experienced human programmer can up-
grade the machine generated code to achieve more con-
cise and efficient code. Upgrading is not difficult since
the machine generated code is straightforward. This can
be.done much faster than by a human programmer de-
veloping a simulator from the beginning.

Using the Model Generator, many multi-valued ele-
ment routines were generated after the generation of the
simulators, in order to upgrade the performance. The
results of model generation are shown in Table 3. Al-
though, at a given level, model generation time increases
according to the circuit size, the automatic model gen-
eration time is extremely fast when compared to manual
generation of models.

8 Conclusion

An automatic simulator generation system was devel-
oped to provide an easy, fast, cost effective, and reliable
way to generate simulators and functional models, us-
ing domain specific automatic programming techniques.
This is the first attempt at automatic simulator gener-

Table 3: Model Generation Results

[Circuit | Size [elements] | Generation Time [sec] |

c432 160 0.68
c499 © 202 1.12
c880 383 3.35
c1355 546 5.82
c1908 880 13.68
2670 1269 38.98
c3540 1669 47.33
c5315 2307 102.07
6288 2416 97.67
7552 3513 223.35
5208 158 (8 FFs) 0.28
5298 226 (14 FFs) 0.40
s344 235 (15 FFs) 0.68
349 245 (15 FFs) 0.72
$386 275 (6 FFs) 0.61
5420 317 (16 FFs) | 1.02
8444 328 (21 FFs) 0.83
s510 350 (6 FFs) 1.12
3641 567 (19 FFs) 3.38
8713 609 (19 FFs) 3.61
$820 582 (5 FFs) 1.93
838 632 (32 FFs) 1.90
$953 658 (29 FFs) 3.68
51196 822 (18 FFs) 5.58
s1238 | 824 (18 FFs) 5.23
s1423 950 (74 FFs) 9.55
51488 946 (6 FF's) 7.83
51494 944 (6 FFs) 7.75
85378 | 4326 (179 FFs) 147.62
89234 | 7226 (228 FFs) 545.71

ation and is another application of automatic program-
ming. Future research includes the optimization of the
generated code in order to generate more efficient pro-
grams, and the development of domain knowledge ac-
quisition tools in order to more easily grow the domain
knowledge.

9 References

[1] A. W. Biermann, G. Guiho and Y. Kodratoff, “An
Overview of Automatic Program Construction Tech-
niques,” Automatic Program Construction Techniques.
1984.

[2] D. Barstow, “Domain-Specific Automatic Program-
ming,” in IEEE Trans. on Software Engineering,
November 1985, pp. 1321-1336.

[3] E. Kant, “Synthesis of Mathmatical Modeling Soft-
ware,” in IEEE Software , May, 1993, pp. 30-41.

[4] D. Barstow, “Automatic Programming for Streams II:
Transformational Implementation,” in Proceedings of
the International Conference on Software Engineering,
1988.

[5] S. A.Szygenda, “Simulation of Digital Systems: Where
We Are And Where We May Be Headed,” in Computer
Aided Design, 1979, pp. 41-54.

[6] C. H. Han, S. Kang and S. Szygenda, “AFMG: Auto-
matic Functional Model Generation System for Digital
Logic Simulation,” in ASIC Conference, 1991.

[7] C. Chuang and S. A. Szygenda, “The Automatic Ele-
ment Routine Generator: An Automatic Programming
Tool for Functional Simulator Design,” 25th Annaul
Simulation Symposium. 1992.

[8] H. Yang and S. A. Szygenda, “A Domain-Specific Au-

" tomatic Programming System for the Element Rou-
tine Generation,” in Proceedings of Summer Simulation
Conference, 1991. .

[9] R. Spickelmier, Release Notes for Oct Tools Distribu-
tion 3.0. Electronics Research Lab., Univ. of Califor-
nia, Berkeley, 1989.

[10] D. Harrison, Symbolic Editing with VEM. Univ. of
California, Berkeley, 1989.

[11] IEEE Standard VHDL Language Reference Manual.
1988.

[12] TEGAS Language Reference Manual. TEGAS Sys-
tems, Inc., GE Calma.

