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Abstract - This paper presents an improved low power 

BIST TPG scheme. It is based on the transition 
monitoring window (TMW). The TMW represses 
transitions of patterns using the k-value which is the 
standard that is obtained from the distribution of the 
TMW to observe over transitive patterns causing high 
power dissipation in a scan chain. We proposed that the 
modified TMW structure using duplicated TMW (DTMW) 
structure. Experimental results show that the proposed 
DTMW can reduce scan transition by about 60% with 
improved fault coverage compared to the TMW in 
ISCAS’89 benchmark circuits.  

Keywords: Pseudo random built-in self test, Test 
generation methodology, Low power design 

1.   Introduction 
   A linear feedback shift register (LFSR) is commonly 
used as a test pattern generator (TPG) in the low overhead 
Built-in Self Test (BIST). However, because a circuit 
under test (CUT) may contain many random pattern 
resistant faults, achieving high performance with pseudo-
random patterns generated from an LFSR often requires 
unacceptably long test sequences [1]. Test patterns 
generated from an LFSR are less correlative than those 
produced by normal operation. Therefore, when test 
patterns are applied to a scan chain, there may be 
excessive switching activity due to low correlation 
between consecutive test patterns would dissipate more 
power [2]. When the peak power exceeds the capability 
that can be tolerated in a circuit, the circuit during test 
application would be permanently damaged by excessive 
heat dissipation. So, a peak power problem due to over-
transitive patterns generated from an LFSR is a necessary 
consideration in a BIST scheme [3]. Several techniques 
have been proposed to address this problem. A BIST 
strategy called dual-speed LFSR [4] was proposed to 
reduce overall switching activities of circuits. It consists 
of two LFSRs, a slow LFSR and a normal-speed LFSR. 
However, this will increase test application time. In order 
to reduce the test length and average power 
simultaneously, Zhang and Roy proposed a low power 
random testing technique [5], in which both signal 
probabilities and activities at the primary inputs are 
optimized, and both the average power and the test length 
are reduced significantly. For ISCAS benchmark circuits, 
while the average of power reduction by using DS-LFSR 

is 19%, the average of power reduction by using the low 
power random testing technique in [5] is as high as 78%. 
The previous techniques are unable to reduce the peak 
power, since the instantaneous power is not directly 
related to the average signal activities A new approach 
was developed to reduce scan shifting transition using a 
transition monitoring window (TMW) [6]. The duplicated 
transition monitoring window (DTMW ) adopted one 
more transition monitoring window to observe the 
original TMW. Because of the TMW size, the region of 
lower transition density in the TMW should be repressed 
in spite of dropping the fault coverage. Therefore, the 
DTMW tried to solve the side effect of the TMW by 
implementing the iterative clock feeding method based on 
the transition tendency information which sent from the 
duplicated TMW. 

The rest of this paper is organized as follows: Section 2 
introduces notations used in the paper and the distribution 
of random pattern transitions. In Section 3, it is discussed 
how the optimal k-value and the TMW size could be set. 
In Section 4, we propose the duplicated TMW structure 
that makes improved fault coverage while showing 
similar power reduction. In Section 5, experimental 
results are reported for ISCAS’ 89 benchmark circuits.  

2.  Distribution Characteristic of Pseudo-
Random Pattern Transitions 

We define a “test pattern” as one entire set to fulfill a 
scan chain and a “vector” means one set of bitwise 
elements making a test pattern. When a test vector 
sequence put into a scan chain, a “Si(v)” is defined as one 
of test vectors that is applied to a scan chain at time i, also 
a “Sj(v)” means consecutive vector of a Si(v), exactly one 
of test vectors that is applied to a scan chain at time j. 
Therefore, when Si(v) and Sj(v) are different, we call it a 
transition. This transition becomes a “transition factor” 
which makes transitions during scan shifting in test mode. 
If a transition has occurred, then the “pattern transition” 
gains 1. By using these definitions, we can calculate the 
pattern transition of each pattern that generated from an 
LFSR. As a result, we were able to know the distribution 
of pattern transitions which satisfy pseudo-random 
Gaussian distribution. Figure 1 shows the pattern 
transition distribution graph of 5000 test patterns 
generated from s38584 that has 1452 scan inputs. In the 
figure, the total number of patterns that has 700 pattern 
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transitions is about 4000 among 5000 patterns. And the 
total number of patterns that has 720 pattern transitions is 
about 4100 among 5000 patterns. So the graph is made by 
connection of the relation to between pattern transition 
and pattern number. 

 

Figure 1 Pattern Transition Distribution Graph (s38584) 
 

We know that n scan inputs circuit has maximum (n-1) 
pattern transition factors. When test patterns are generated 
from an LFSR, some of them would form transition 
factors. At this time, each transition factor becomes the 
element of pattern transition. From the relation between 
the transition factors and the pattern transition, we 
assumed that the average pattern transition of a pattern 
would be roughly (n-1)/2. Because patterns are generated 
by a pseudo-random method, we deduced that some rules 
must exist. This deduction could be observed from graphs 
of Figure 1. The graph of generated patterns makes an 
almost symmetrical curve whose central axis is almost (n-
1)/2. Practically, when we generate 5000 test patterns 
from s38584, the average pattern transition are 725.3 
which are similar value to (n-1)/2. This fact can be seen in 
another ISCAS’ 89 benchmark circuits.  
Table 1 Comparison between Average Pattern Transition 

and (n-1)/2 in Some Benchmark Circuits 
 

circuit 
average 
pattern 

transition 
(n-1) / 2 scan inputs 

s838 22.77 15.5 32 
s1432 36.5 36.5 74 
s9234 113.6 113.5 228 

s13207 334.2 334 669 
s38417 817.4 817.5 1636 
s38584 725.3 725.5 1452 

 

Six ISCAS’ 89 benchmark circuits are compared for 
two parameters, average pattern transition and (n-1)/2. As 
we can see from the table, the two parameters generate 
similar values. That means we can use (n-1)/2 as the 
standard for predicting the average pattern transition of 
circuits. From the distribution characteristics that come 
from the random pattern property that is generated from 
an LFSR, we could control average pattern transition of 

circuits. This means that if we can have the scheme to 
monitor the transitive tendency of an LFSR, some over-
transitive patterns could be repressed by applying the last 
scan input vector again. This scheme is the transition 
monitoring window (TMW). By the TMW, we can 
achieve a reduction for scan shifting transitions as well as 
pattern transitions.  

3. Decision to Set Optimal k-value and 
Transition Monitoring Window Size 

In Section 2, we have found that pattern transitions are 
distributed around (n-1)/2. The standard acts to make 
dropping the average pattern transition. In order to set the 
standard, called a k-value, we have to decide how the 
transitive tendency will be observed. It is accompanied 
with the transition monitoring window (TMW). The 
TMW is a part of an LFSR. As transitions in a TMW 
exceed the k-value, a vector directed to output is 
converted to the high correlation vector which is the last 
input vector in a scan chain. In this paper, we increase or 
decrease k-values to find an optimal transitive repression 
values. Let us discuss how a TMW size should be selected. 
Once a TMW is set, the TMW block could observe whole 
transitions of the LFSR. Therefore, transitions that exceed 
the k-value will be repressed by a MUX. However, we 
should make the exact definition for the size of the TMW. 
Experiments were done using 3/4, 1/2, 1/4 of an LFSR 
size. As a result, a half of an LFSR size was examined as 
an optimal size for the TMW because of the trade-off 
between fault coverage and transition reduction. As the 
TMW size is set to a half of an LFSR size, we should 
decide how many transitions repress using a k-value. 
Equations (1) and (2) represent formal expressions of the 
TMW size and the k-value. 

2
sizeLFSRsizeTMW =                                            (1) 

α±−
=−

2
1sizeTMWvaluek                              (2) 

In order to find the optimal k-value, we examined the 
relationship between various k-values and the change of 
the fault coverage in experiments. As a result, we could 
achieve about 25~79% scan shifting transition reduction. 
However, we should give attention to the k-value which is 
obtained by α =+1, because the optimal fault coverage 
and transition reduction can be achieved simultaneously in 
that condition. Figure 2 shows graphs for the relation to 
variousα  factors and TR and FC. TR is defined as the 
number of transitions for modified patterns divided by the 
number of transitions for the original patterns from the 
LFSR. FC means fault coverage for the modified patterns. 
In Figure 2 (a), when α  factor gets smaller and smaller, 
we can see that TR tends to improve. Small α  factors 
make longer repressed regions in patterns. Therefore, it 
can not but improve transition reduction. However, small 
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α  factor makes the decrease of FC in Figure 2 (b). 
Moreover, when α  is smaller than ‘+1’, the slope of the 
graph is decreased dramatically.   

 

(a) Graphs for the relation between α factor and TR 
 

 
(b) Graphs for the relation between α factor and FC  

Figure 2 Graphs for various α factors according to the 
change of TR and FC 

 

4. Adoption of the Duplicated TMW  
The TMW cannot but observe transitions in the defined 

range. In Figure 3, the TMW size is set to a half size of an 
LFSR. If the transition number exceeds the k-value, the 
TMW would repress the outgoing vector to Sin until over-
transitive region is eliminated. But if the transition density 
of A is higher than that of B, low-transitive region of B 
would be repressed by A. It is not a desirable thing 
because it can impact on the fault coverage.  

 
Figure 3 Problem for transition density in the TMW 
 

Therefore, we modified the original TMW to improve 
the performance. We adopted a duplicated TMW 
(DTMW) to observe the transition tendency of the TMW. 
Even though the transition number of the TMW is over k-
value, the DTMW could keep alive vectors that desired 
not to repress. The DTMW has its own standard, d-value. 
If transition number of the DTMW is below the d-value, 
transition factors in region B, DTMW region, would not 
be repressed using clock feeding. Clock feeding is 
controlled by the size of the DTMW.  

2
sizeTMWsizeDTMW =                                           (3) 

1
2

−
−

=−
valuekvalued                                           (4) 

Because the transition distribution tendency that 
generated from an LFSR has the regular form following 
the pseudo Gaussian distribution, DTMW size is set by 
the same method of the TMW [6]. The d-value is the 
standard for not repressing vectors. Therefore, it should be 
set by considering the transition balance between the left 
side of the TMW and the DTMW side. For example, if we 
have a 32-bit LFSR, the TMW size would be 16 bits. And 
the k-value is 8 by (2) when α =+1 which is the optimal 
value that mentioned in Section 3. The DTMW size will 
be 8 bits. In here, the left half side of the TMW has 7 Tf 
and the DTMW has 7 Tf as shown in Figure 4. The 
DTMW is operated while the TMW is enabled and 
transition number of the DTMW should be smaller than 
the half left side of the TMW.  

 
Figure 4 Transition factors after adopting the DTMW  
 

Therefore, d-value is determined below the half of k-
value like Table 2. Exactly, d-value=3 is the best value for 
the DTMW in 32-bit LFSR which could be obtained by 
equation (4). The left column is in the TMW side, and d-
value is in the DTMW side. 
Table 2 Best value for the d-value in the DTMW 
 

The left half of 

the TMW 

d-value 

(DTMW) 

4 4 

5 3 

6 2 

7 1 

 

If the transition number of the DTMW is below the d-
value during the TMW is enabled, pattern shifting clock 
would be fed until vectors of the DTMW is entirely 
updated to new vectors from the half left side of the TMW. 
From this method, we could keep alive vectors that have 
low transition density that compared with the other side of 
the TMW. It can help to improve the fault coverage while 
keeping similar transition reduction performance.  
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5.   Results 
Experiments were conducted using chosen circuits that 

have many scan inputs among ISCAS’89 benchmark 
circuits. The proposed approach was implemented by C++ 
language like the original TMW. We fixed the applied 
pattern number to 5000. The LFSR sizes to set the TMW 
sizes are 32-bit, 24-bit, and 16-bit. The TMW size as 
mentioned is a half of an LFSR size which was 
determined by additional experiments not shown here. 
The DTMW size is set form equation (3). We applied the 
k-value when α =+1 and the d-value were determined by 
equation (4).  
Table 3  Results of the application of various LFSR, TMW, 

and DTMW sizes 
 

32-bit LFSR/16-bit TMW/8-bit duplicated TMW 

TMW DTMW circuit 

Pseudo-
random 

fault 
coverage TR (%) FC TR (%) FC 

s5378 96.27 55.2 95.70 54.8 97.27 

s9234 93.36 61.4 86.40 58.8 90.10 

s13207 97.83 62.9 95.31 60.2 97.42 

s38584 98.41 63.3 96.53 62.5 97.38 

s38417 98.47 60.4 93.84 57.9 95.55 

24-bit LFSR/12-bit TMW/6-bit duplicated  TMW 

TMW DTMW circuit 

Pseudo-
random 

fault 
coverage TR (%) FC TR (%) FC 

s5378 96.27 55.3 95.70 54.3 97.40 

s9234 93.36 64.4 86.40 61.9 90.15 

s13207 97.83 62.9 95.31 60.5 97.33 

s38584 98.41 63.3 96.53 62.7 97.48 

s38417 98.47 62.2 93.84 61.3 94.49 

16-bit LFSR/8-bit TMW/4-bit duplicated  TMW 

TMW DTMW circuit 

Pseudo-
random 

fault 
coverage TR (%) FC TR (%) FC 

s5378 96.27 65.2 95.04 64.10 97.57 

s9234 93.36 68.5 86.24 66.52 90.24 

s13207 97.83 63.2 95.63 61.30 97.45 

s38584 98.41 63.3 93.45 62.40 97.66 

s38417 98.47 64.3 92.68 62.64 94.30 

 

Table 3 shows the results from applying variable sizes 
of an LFSR, TMW, and DTMW. We were able to achieve 
an average of 62.4% scan shifting transition reduction in 
the TMW when α =+1. When the DTMW scheme is 
adopted, the transition reduction was decreased very 
slightly. As shown in Table 3, we could achieve an 
average of 60.8% scan shifting transition reduction, which 
is reduced about 2% compared to the original TMW 
scheme. However, we should give attention to the change 

in the fault coverage. Though the repressed region is 
decreased, vectors that are not repressed are kept alive. 
This leads to positive impact on the fault coverage 
because not-repressed vectors made the probability to 
detect different kinds of faults high. As a result, we could 
achieve about 2~4% fault coverage improvement. Figure 
5 shows the comparative results of the TMW patterns and 
the DTMW patterns. The shaded box of the TMW pattern 
stands for one of the repressed regions. Because the TMW 
observe transition tendency in range of the TMW size, the 
repressed region would be long. However, the shaded box 
of the same region for the DTMW shows that the 
repressed region has changed to its not-repressed vectors. 
It means that the DTMW patterns have higher probability 
for detecting faults than those of the TMW.  

 
(a) TMW patterns 

 

 
(b) DTMW patterns 

 
Figure 5 Comparison the TMW patterns with the DTMW 

patterns 
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