Analysis of the Impact of Simultaneous Multithreading on
Cache Interference

Byung In Moon
Yonsei University
Seoul, Korea
bihmoon@soc.yonsei.ac.kr

Ilgu Yun
Yonsei University
Seoul, Korea
1yun@yonsei.ac.kr

Abstract Simultaneous multithreading attracts
attention to many microprocessor designers, since it
seems to overcome the architectural performance limit of
the superscalar processor. Although simultaneous
multithreading improves processor utilization through
dynamic resource sharing among threads, it can increase
cache interference and degrade overall performance.

This paper identifies the problem of inter-thread cache
interference on simultaneous multithreading and analyzes
the impact that variation of cache configuration
parameters has on inter-thread cache interference and
overall performance. Our results show that the size of
caches has a big impact on both inter-thread and intra-
thread cache interference. On the other hand, increasing
the number of cache ways is beneficial only to inter-
thread cache interference. Overall the variation of the
size and set associativity of caches have a significant
Impact on processor throughput, whereas the change of
the block size of caches has little impact.

Keywords: Simultaneous multithreading, cache, inter-
thread cache interference, intra-thread cache interference.

1 Introduction

The superscalar processor reaches its architectural
performance limit. For this reason, multithreading,
especially simultaneous multithreading (SMT) [1] draws
special attention to many microprocessor designers which
have been seeking to improve the processor architecture
for higher performance. Multithreading hides latency
problems such as memory access latency by increasing
parallelism through thread-level parallelism (TLP), thus
dramatically increasing processor utilization and
significantly improving instruction throughput.
. Multithreading is divided into three categories: coarse
multithreading (CMT), fine multithreading (FMT), and
SMT [2]. A key feature of multithreading is sharing
processor resources among threads. In CMT and FMT
processors, at most one thread can occupy a pipeline stage
at one time, so inter-thread resource sharing is limited to
an interleaving of instructions from different threads. On
the other hand, in the SMT architecture, the processor

535

Hongil Yun
Yonsei University
Seoul, Korea
hyoon@yonsei.ac.kr

Sungho Kang
Yonsei University
Seoul, Korea
shkang@yonsei.ac.kr

pipeline resources may be shared horizontally as well as
vertically, so that SMT can convert TLP to instruction-
level parallelism (ILP) [3]. Through this parallelism
converting, the SMT architecture issues and executes
instructions from multiple threads each cycle, increasing
processor throughput notably.

Although multithreading improves processor
performance by exploiting TLP, it has a tendency to
increase the number of conflict cache misses. And
increased cache miss rates by multithreading can hurt
processor performance. In CMT, context switching
between threads may evict useful cache blocks from
descheduled threads. In SMT, where thread execution is
interleaved at a much finer granularity, cache accesses
from one thread may replace active cache blocks from
other threads with the accessed blocks. This inter-thread
cache interference may offset the performance
improvement by multithreading. This paper analyzes
cache interference on SMT processors with various cache
configurations. We categorize cache misses in the SMT
architecture as first-reference misses, inter-thread conflict
misses, and intra-thread conflict misses [3], and we
measure these three types of cache miss rates on SMT
processors with a variety of cache configurations. This
paper also presents cache configuration factors that
significantly affect inter-thread cache interference on
SMT processors.

The problem of inter-thread cache interference in
multithreading architectures has been studied by a number
of researchers. Thekkath and Eggers [4] analyzed the
impact of thread placement algorithms on the cache
interference of multithreaded multiprocessor architectures.
Lo et al. [3] measured inter-thread conflict misses on
SMT processors through simulations, during which they
varied the number of supported threads but fixed the
cache configuration. Lo et al. [5] examined the effects of
cache interference on SMT processors for database
workloads. These previous works do not give full analysis
of the impact that the cache configuration has on inter-
thread cache interference in the SMT architecture. This
paper is, to our knowledge, the first to analyze inter-
thread cache interference on SMT processors with various
cache configurations.

2 Simulation methodology

This section presents an overview of the base processor
architecture that we model in detail for simulations, and
gives some explanations for the modelling and simulation
methods.

2.1 Base architecture

In [6] and [7], an in-order SMT architecture was
introduced that is used as the base processor architecture
of this paper. We summarize this architecture in this
section, but the interested reader is referred to [6] and [7]
for more details.

Our SMT architecture is pipelined into 8 stages: select
(S), fetch (F), decode (D), issue (1), read (R), execute (E),
memory (M), and write (W). In the S stage, which is an
extra stage for supporting multithreading, the thread
selector picks up threads from which instructions are to be
fetched by the fetch unit in the next cycle. In the D stage,
the decode unit decodes instructions in the fetch order.
The issue unit issues decoded instructions to the
functional units. Issued instructions obtain their operands
through bypassing, or from the register file. Then they are
executed in their assigned functional units. Exception and
branch misprediction are checked in the M stage. In the W
stage, writes to the register file are performed in the order

Table 1. Base configuration parameter values.

Configuration
Parameter value
parameter .
Issue width (IW) -4 or 8 instructions per cycle

Fetch width
Instruction fetch

queue (IFQ)
Instruction issue

queue (JIQ)
Register file

(1 x IW) instructions per cycle

(8 x IW) entries

(8 x IW) entries

(2 x IW) read ports,
(1 x IW) write ports
(1 x IW) integer ALUs,
(1/2 x IW) integer multipliers,
(1/2 x IW) load/store units
1 cycle except integer multiplication (2

Functional units

Latencies
cycles)
(32 x IW) entries,
BTB branch prediction using 2-bit saturation
counters
Instruction TLB 64 entries
Data TLB 64 entries

(1/2 x IW) ports,
1-cycle hit latency,
10-cycle miss penalty,
random replacement
Give higher priority to those threads with
fewer instructions in the IFQ and 11Q
Give higher priority to those instructions
closer to the head of the I1Q

Instruction and data
caches

Fetch policy

Issue policy

536

within each thread, and instruction execution is completed.

2.2 Modelling and simulation

We measure inter-thread cache interference using an
execution-driven, cycle-based simulator modelling in
detail our SMT architecture. The simulator adopts the
ARM architecture [8] as its instruction set architecture
(ISA), and its base configuration parameter values are
listed in Table 1.

Our workload for simulation is from the three SPEC
CPU2000 benchmarks: mcf, twolf, and vortex [9], and
from the two example programs of the ADS (ARM
Developer Suite): Dhrystone and sorts [10]. Threads of
the simulator model execute the five programs in different
orders to prevent abnormal inter-thread cache interference,
which can occur when multiple threads execute the same
program simultaneously. During the simulations using
this workload, we vary three configuration parameters of
instruction and data caches: cache size, set associativity,
and block size, and measure cache miss rates and
instructions per cycle (IPC) for each cache configuration.
For convenience, the instruction and data caches have the
same parameter values.

3 Simulation results

We carried out simulations for identifying the problem
of inter-thread cache interference on SMT. As shown in
Fig. 1, as the number of threads increases, the number of
inter-thread conflict misses of the instruction cache rises,
from 4.7% (2 threads) to 10.4% (4 threads) to 12.5% (8
threads) to 18.9% (16 threads) of total instruction cache
accesses. The data cache shows the similar results for
inter-thread cache interference. This increase of inter-
thread cache interference in the SMT architecture has a

060 2.0
0551
0.50 F
045}
040
035}
030+

0251

0201

015+

DRUEY

005+ !
0.00

13 D$ 13 D$ 15 D% 1$ D$
1 -2 4 8
Number of threads

Cache miss rates
Instruction throughput (IPC)

15 D$
16

@ First-reference miss rate

tra-thread miss rate
[Inter-thread miss rate

@ Instruction throughput -~

Fig. 1. Cache miss rates and instruction throughput for
8-issue processors {using 8-KB direct-mapped caches
whose block size is 32 bytes).

Table 2. Variation of cache miss rates and instruction throughput depending on cache size.

Cache Inter-thread conflict Intra-thread conflict Instruction
Processor . . miss (miss rate/ miss (miss rate/
. Cache size miss rate throughput
configuration ratio to total miss rate) ratio to total miss rate) (IPC)
1$ D$ 1$ D$ 1$ D$
4issue 2 KB 0.0903 1 0.2015 [0.0690/76% | 0.0818/41% { 0.0206/23% {0.0223/11% | 1.3210
4_'&;5:; . 4KB [0.0601 [0.1284 [0.0457/76% | 0.0433/34% | 0.0137/22% | 0.0124/10% | 1.9187
4-way set asso;iative 8 KB 0.0253 1 0.0670 [0.0191/75% | 0.0120/18% | 0.0056/22% { 0.0036/5% | 2.5225
block size fo 64 byte; 16 KB 0.0020]0.0548 { 0.0014/70% | 0.0049/9% |[0.0004/20% | 0.0018/3% | 2.6839
32 KB 0.0004 } 0.0515] 0.0002/56% | 0.0028/5% |0.0001/21% { 0.0013/3% | 2.6958
8. 4KB 0.0902 | 0.3050 { 0.0802/89% | 0.0896/29% | 0.0094/10% | 0.0132/4% 1.2488
8&15::; 8KB |0.05280.1981]0.0469/89% | 0.0460/23% | 0.0052/10% | 0.0082/4% | 2.2247
8-way set asso::iative 16 KB 0.0280 | 0.1400 [0.0244/87% | 0.0233/17% { 0.0032/11% | 0.0048/3% | 4.2015
S ’ 32 KB 0.006910.1120 1 0.0057/83% | 0.0114/10% [0.0007/10% | 0.0034/3% | 5.2828
block size of 64 bytes
64 KB 0.0014 | 0.1000 | 0.0011/78% | 0.0062/6% | 0.0001/9% | 0.0026/3% | 5.3925
tendency to degrade overall performance. The cache ways is a very important parameter to the inter-

performance with 1 thread is better than that with 2
threads. This is because the benefit by multithreading
outweighs the increased inter-thread cache interference.
To the contrary, as the number of threads increases in the
range over 2 threads, the instruction throughput gets
lower, since, in this range, the parallelism increased by
supporting more threads is more than offset by the
increased inter-thread cache interference.

We found in Table 2 that as the size of caches increases
with the set associativity and block size fixed, inter-thread
and intra-thread conflict miss rates drop, and thus
instruction throughput improves. This is because larger
caches provide the more capacity to accommodate the
working sets. For our workload, 16-KB and 32-KB caches
are appropriate for 4 threads and 8 threads, respectively.

Table 3 shows that as the number of cache ways
increases, inter-thread conflict miss rates fall, and thus
total miss rates decrease and processor throughput
improves. However, the variation of set associativity has a
limited impact on intra-thread conflict misses unlike that
of cache size. This result indicates that the number of

thread cache interference and processor performance of
the SMT architecture. We further found that increasing
the number of cache ways to more than the number of
threads is little beneficial to inter-thread conflict miss
rates and instruction throughput. So we recommend 4-
way and 8-way caches for 4 threads and 8 threads,
respectively.

The large block size of caches is beneficial to
sequential memory accesses, but is not favorable to
random memory accesses, since the smaller number of
blocks is provided if the block size becomes larger with
the cache size fixed. So the instruction cache benefits
from increasing the block size, but the data cache does not,
as shown in Table 4. Overall, the block size of caches has
little impact on the inter-thread cache interference and
processor performance of our SMT architecture.

4 Conclusions

By converting TLP to ILP, the SMT architecture issues
and executes instructions from multiple threads each cycle,

Table 3. Variation of cache miss rates and instruction throughput depending on set associatvity.

Cach Inter-thread conflict Intra-thread conflict Instruction

Processor Set misascraet miss (miss rate/ miss (miss rate/ throughput
configuration associativity © ratio to total miss rate) ratio to total miss rate) (ngc)p

1$ D$ 1$ D$ I$ D$

4 1-way 0.0445] 0.2035] 0.0402/91% | 0.0861/42% | 0.0041/9% | 0.0106/5% | 1.7897
A 2-way |0.0359[0.1217 [0.0302/84% | 0.0414/34% | 0.0054/15% | 0.0044/4% | 22252
cache size ofé KB 4-way 0.0253 10.0670 { 0.0191/75% | 0.0120/18% | 0.0056/22% { 0.0036/5% | 2.5225
block size of 64 bytés 8-way 0.0190] 0.0656 | 0.0141/74% | 0.0105/16% | 0.0049/26% | 0.0037/6% | 2.5677
16-way | 0.0174]0.0612 | 0.0126/72% | 0.0082/13% | 0.0048/27% | 0.0035/6% | 2.5917
8. 2-way 0.0442 1 0.2112 1 0.0421/95% | 0.0508/24% | 0.0019/4% | 0.0060/3% | 2.2998
St‘;:;:’a 4-way |0.0350 | 0.1708 | 0.0319/91% | 0.0354/21% | 0.0028/8% | 0.0052/3% | 3.2805
cache size of 1’6 KB 8-way 0.0280 | 0.1400 | 0.0244/87% | 0.0233/17%] 0.0032/11% | 0.0048/3% } 4.2015
block size of 64 byte,s 16-way 10.0240{0.1378 | 0.0207/86% | 0.0219/16% | 0.0032/13% | 0.0050/4% | 4.4539
32-way {0.0235]0.1315 | 0.0200/85% | 0.0184/14% {0.0034/14% | 0.0048/4% | 4.6147

537

Table 4. Variation of cache miss rates and instruction throughput depending on block size.

Inter-thread conflict Intra-thread conflict .
Cache Instruction
Processor . . miss (miss rate/ miss (miss rate/
: Block size miss rate throughput
configuration ratio to total miss rate) ratio to total miss rate) (IPC)
I3 D$ I$ D$ I$ D$
4-issue, 8 bytes 0.0279] 0.0626 { 0.0209/75% | 0.0106/17% | 0.0064/23% | 0.0044/7% | 2.4910
4-thread, 16 bytes {0.0269] 0.0639 | 0.0202/75% | 0.0121/19% | 0.0059/22% | 0.0032/5% | 2.5037
cache size of 8 KB, 32 bytes [0.0260 | 0.0645 | 0.0192/74% | 0.0116/18% | 0.0060/23% | 0.0039/6% | 2.5108
4-way set associative | 64 bytes | 0.0253 [0.0670] 0.0191/75% | 0.0120/18% | 0.0056/22% | 0.0036/5% | 2.5225
8-issue, 8 bytes 0.0307) 0.1416 1 0.0264/86% | 0.0255/18% | 0.0034/11% | 0.0057/4% | 4.1395
8-thread, 16 bytes | 0.0295|0.1439 | 0.0254/86% | 0.0245/17% | 0.0035/12% | 0.058/4% 4.1649
cache size of 16 KB, | 32 bytes |0.0288 | 0.1428 | 0.0251/87% [0.0228/16% | 0.0029/10% | 0.0065/5% | 4.1890
8-way set associative | 64 bytes | 0.0280 { 0.1400 | 0.0244/87% | 0.0233/17% | 0.0032/11% | 0.0048/3% | 4.2015

thus improving processor performance dramatically. On
the other hand, SMT has a shortcoming that inter-thread
cache interference, which is detrimental to overall
performance, increases due to multithreading. However,
the impact that the cache configuration has on inter-thread
cache interference in the SMT architecture has not been
fully analyzed.

This paper categorizes cache misses as first-reference
misses, inter-thread conflict misses, and intra-thread
conflict misses, and we measure the impact that the size,
set associativity and block size of caches have on the
cache interference and processor throughput of the SMT
processors. The size of caches affects both inter-thread
and intra-thread cache interference, and has a large impact
on the performance of SMT processors. The set
associativity of caches has a significant impact on inter-
thread cache interference and processor throughput, but
has a limited impact on intra-thread cache interference.
The block size of caches has a relatively small impact on
cache misses and performance.

Besides, this paper somewhat overstates the amount of
inter-thread cache interference, since we have not applied
compiler optimizations to reduce interference. We believe
that compiler optimizations exist that reduce inter-thread
cache interference in the SMT architecture, and this is an
area of future research.

Acknowledgements

The work reported in this paper was supported by the
Brain Korea 21 Project in 2004.

References

[11 P. Song, “Multithreading comes of age,
Microprocessor Report, Vol. 11, No. 9 July 14, 1997.

[21 D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous multithreading: maximizing on-chip
parallelism,” Proc. 22nd International Symposium on
Computer Architecture, pp. 392-403, Santa Margherita
Ligure, Italy, June 1995.

i3}

538

[3] J.L.Lo,S. J Eggers,J. S. Emer, H. M. Levy, R. L.
Stamm, and D. M. Tullsen, “Converting thread-level
parallelism to instruction-level parallelism via
simultaneous multithreading,” ACM Transactions on
Computer Systems, Vol. 15, No. 3, pp. 322-354, Aug.
1997.

{41 R. Thekkath, and S. J. Eggers, “Impact of sharing-
based thread placement on multithreaded architectures,”
Proc. 21st International Symposium on Computer
Architecture, pp. 176186, Chicago, Illinois, April 1994.
[5] J. L.Lo,L. A. Barroso, S.J. Eggers, K. Gharachorlo,
H. M. Levy, and S. S. Parekh, “An analysis of database
workload performance on simultaneous multithreading
processors,” Proc. 25th International Symposium on
Computer Architecture, pp. 39-50, Barcelona, Spain, June
1998.

[6] B. 1. Moon, Study of an In-order SMT Architecture
and Grouping Schemes, Ph.D. Thesis, Yonsei University,
Seoul, Korea, 2002,

[7] B.I. Moon, M. G. Kim, I. P. Hong, K. C. Kim, and
Y. S. Lee, “Study of an in-order SMT architecture and
grouping schemes,” International Journal of Control
Automation, and Systems, Vol. 1, No. 3, 339-350, Sept.
2003.

[8] D. Jagger, and D. Seal, ARM Architecture Reference
Manual, 2nd Edition, Addison-Wesley, Boston,
Massachusetts, 2000.

[9] J. L. Henning, “SPEC CPU2000: measuring CPU
performance in the New Millennium,” IEEE Computer,
Vol. 33, No. 7, pp. 28-35, July 2000.

(10] ARM Limited, ARM Developer Suite, Nov. 2001,
http://www.arm.com/documentation/Software_Developm
ent_Tools/index.html.

