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Abstract— Due to the growth of network environment 
complexity, the necessity of packet payload inspection at 
application layer is increased. String matching, which is critical 
to network intrusions detection systems, inspects packet payloads 
and detects malicious network attacks using a set of rules. 
Because string matching is a computationally intensive task, 
hardware based string matching is required. In this paper, we 
propose a hardware-efficient string matching architecture using 
the brute-force algorithm. A process element that organizes the 
proposed architecture is optimized by reducing the number of 
the comparators. The performance of the proposed architecture 
is nearly equal to a previous work. The experimental results show 
that the proposed architecture with any process width reduces 
the comparator requirements in comparison with the previous 
work. 

Keywords: network intrusion detection system, deep packet 
inspection, string matching, brute-force algorithm 

I.  INTRODUCTION  
Contrary to traditional firewall, NIDS(Network Intrusion 

Detection System) inspects the network packet payload at 
application-layer and detects the malicious network packets. 
Because of the growth of network environment complexity and 
the ingenious network attacks, the efficient and effective 
implementation of system is important. Especially, the string 
matching that inspects the contents in network packet payload 
determines the performance of NIDS. Thus, the network wire-
speed and the low cost implementation should be supported by 
string matching. Because the software implementation of string 
matching, such as the Boyer-Moore[1] and the Knuth-Morris-
Pratt[2] algorithms, cannot support the network wire speed, the 
hardware implementation of string matching has many 
researches lately. 

The hardware implementation of the Aho-Corasick 
algorithm[3] that is designed for multiple pattern matching 
requires a lot of memories in order to store the all possible next 
states for current state. The bit-split Aho-Corasick algorithm[4] 
optimizes the Aho-Corasick algorithm by splitting the input 
character. Although the bit-split Aho-Corasick algorithm 
reduces the possible next state, the memory requirement is still 
high. The bloom filter based string matching[5] has a more 
efficient data structure than the memory based implementation. 
However, to prevent the false positive error, it uses the hash 
tables of the two levels. Also, the bloom filter requires the hash 
table for each pattern length. Cho et.al.[6] uses the brute-force 

algorithm. The brute-force based hardware organizes the 
pattern using logic instead of memory. Therefore, string 
matching using the brute-force based hardware supports high 
speed of pattern matching but the hardware cost is high. 

This paper proposes the hardware-efficient string matching 
architecture using the brute-force algorithm. The proposed 
string matching architecture reduces the requirement of the 
comparators per process element while minimizing the 
degradation of performance. The rest of paper is organized as 
follows. In section 2, we briefly present the previous work. In 
section 3, we describe the proposed string matching 
architecture and the performance analysis. In section 4, the 
comparison of our string matching architecture with the 
previous work is shown. Finally, we conclude with a summary 
of the proposed string matching architecture. 

II. MULTI-CHARACTER PROCESSOR ARRAY 
The brute-force algorithm has high speed string matching 

performance, but it is targeted for single pattern matching. The 
multi-character processor array method[6] using the brute-force 
algorithm employs parallel set of process element chains for 
multiple pattern matching. One process element chain handles 
one pattern, and the set of process element chains process 
multiple patterns parallel. Each process element in the process 
element chain processes a substring of a pattern. The substring 
is part of the pattern. Each pattern spilt into the multiple 
substrings which have the length of process width, and 
implemented by the process element chain which has multiple 
substrings. The architecture of the process element that has 
substring 'abc' and the chained process elements are shown in 
Figure 1(a).  

The process element with process width n in the previous 
work processes n characters per step. In the multi-character 
matching, all possible n cases should be matched by string 
matching architecture. In other words, patterns can be found 
anywhere in the input string. All possible cases for pattern 'abc' 
are shown in Figure 1(b) and they should be found by the 
process element with substring 'abc' in Figure 1(a). To find the 
all possible cases in the multi-character matching, the previous 
work stores the results of matching in (i-1) th step and 
composes the results of matching in (i-1) th step and i th step 
for matching of all the possible cases. The dotty lined box (1) 
in the Figure 1(a) is the set of comparators that targets the input 
string (case 2) in the Figure 1(b). In (i-1) th step, the matching 
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result of the pattern '*ab' is stored at register. In i th step, the 
matching result of the pattern 'c**' and the matching result of 
the previous step are ANDed. In the same way, the dotty lined 
box (2) in the Figure 1(a) finds the input string (case 1) in the 
Figure 1(b). Because the matching result of the substring is 
transferred to next process element, the next substring can be 
matched sequentially. 

Since the previous work uses the set of comparators for 
each pattern position, the hardware cost is high. Therefore, a 
hardware-efficient architecture of multi-character processor 
array is proposed in this paper. In our work, the process 
element is optimized by reduction of the required comparators. 
The alignment element is proposed for the matching of all the 
possible input strings.  

III. PROPOSED METHOD 
In this section, we propose the hardware-efficient 

architecture of process element. In the proposed architecture, 
the comparators which detect partial matching of target 
substring, such as (case 1) and (case 2) in Figure 1(b), are 
eliminated from every process element. Instead, input string is 
aligned by the alignment element which is added only to the 
first process element of each process element chain. Although 
the alignment element requires an additional step, the 
performance degradation is not severe because the occurrence 
of malicious packets is rare. The performance analysis is 
described in the sub-section D. 

A. Proposed Process Element 
In previous work, process element uses 2n  comparators for 

matching n characters per step. When process width is 
increased linearly, the number of comparators is increased 
exponentially. To solve the hardware cost problem, the process 
element which uses n comparators with process width n is 
proposed in this paper. The architecture of proposed process 
element with process width 3 is shown in Figure 2.  

An enable signal is turn on/off the process element. A 
match signal indicates whether input string is matched or 
unmatched in the process element. The results of comparators 
and the result of matching in prior process element are ANDed 
and the ANDed signal activates the enable and match signals. 
The enable and match signals of first process element are 

always active. The enable and match signals are transferred to 
next process element. By the transferring the enable signal, the 
unnecessary computation is removed because all process 
element is not always activated. If match signal is transferred to 
the last process element, the final matching signal is activated. 
Since the input string is transferred to the all process elements 
concurrently, the string matching can be performed 
continuously through the process elements. 

B. Alignment element 
The proposed process element removes the comparator 

which detects fractions of target, such as (case 1) and (case 2) 
in Figure 1(b). Thus the proposed process element cannot 
search the pattern in the all the possible input strings. The 
alignment element is proposed to solve the problem of the 
multi-character matching. If the suffix of input string is 
matched to the prefix of the matching target pattern, the 
alignment element aligns input string. Consider the example in 
Figure 3: 

(1) In the case of input string '**a', the suffix of the input 
string 'a' is matched to the prefix of the substring 'a'. The 
matching in current process element is determined by the 
matching results of next two characters of the input string. The 
input string '**a' is shifted by the alignment element. In the 
next step, the shifted input string ‘abc’ is compared to the 
substring 'abc' in the process element. 

(2) In the case of input string '*ab', the suffix of the input 
string 'ab' is matched to the prefix of the substring 'ab'. The 
matching in current process element is determined by the 
matching results of next one characters of input string. The 
input string '*ab' is shifted by the alignment element. In the 
next step, the shifted pattern ‘abc’ is compared to the substring 
'abc' in the process element. 

(3) In the case of input string 'abc', the input string is 
exactly matched to the substring in the process element. In the 

 

Figure 1.  The previous architecture of process element, chained process elements 
and the three possible cases that should be matched by PE 

 

Figure 2.  The proposed architecture of process element 

 

Figure 3.  The example of string alignment using the proposed alignment 
element 
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next step, the next n input string is compared to the substring in 
the next process element. 

The exact matching spends 1 step. But the partial matching 
spends additional step for the alignment of the input string. 
Therefore, the performance of string matching architecture is 
affected by the number of the pattern alignments. In the 
subsection D, we analyze the performance degradation in 
comparison of the previous work.  

One alignment element is needed to one pattern. The 
alignment element handles partial matching of substring in the 
first process element. Therefore, the required comparators per 
alignment element increase as the process width increases. The 
requirement of the comparators per alignment element is 
represented by Equation (1). The function ƒ(n) indicates 
requirement of the comparators per alignment element with the 
process width n. 

0)1(),1()1()( =−+−= fnfnnf  (1) 

C. Overall Architecture 
The proposed string matching architecture consists of the 

process elements and the alignment elements. The 
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alignment element is needed for one target pattern. The process 
element with process width n has n comparators and is chained. 
When the substring in the process element is 

}...{ 321 nnnnnp = and the process width n, the alignment 
element consists of the sets of the comparators for 

}{...,},...{},...{ 32321 nnn nnnnnnnn . The shift value of the input 
pointer depends on the results of the shift encoder. The shift 
encoder determines the MUX control signal for input pointer 
using the results of the alignment element and the process 
elements. 

The proposed string matching architecture with process 
width 3 is shown in Figure 4. The alignment element processes 
'**a' and '*ab', prefixes of substring 'abc'. If '**a' is matched, 

the input pointer shifts 2 characters. If '*ab' is matched, the 
input pointer shifts 1 character. If 'abc' is matched, activated 
match and enable signal are transferred to next process 
element. If the match signal of the last process element is 
activated, the string matching architecture reports the pattern 
matching. The cases of the shift encoder as follow:  

(1) 00: input string is not matched anywhere & input string 
is matched in process element. 

(2) 10: 1 character of suffix of input string is matched & 
input string is not matched in process element. 

(3) 01, 11: 2 characters of suffix of input string are matched 
& input string is not matched in process element. 

D. Performance Analysis 
The previous process element processes deterministically n 

characters per step. The reduction of the required comparators 
per process element causes that the proposed architecture loses 
the deterministic performance. In other words, when the partial 
matching is occurred, the alignment element spends additional 
1 step in order to align the pattern. In this case, the proposed 
architecture could process fewer than n characters per step. In 
this section, we analyze the performance of string matching 
architecture mathematically.  

When process width is n, the ratio of the matching target 
pattern in the whole internet packet is m and the probabilities of 
the each possible position of substring in the process element is 
1/n equally, the performance of the proposed architecture is 
Equation (2). 

)1...211()1( n
nnn

mnm ×++×+×+×−   

2
)1( nmnm ×+×−=  (2) 

If the input string is exactly matched, the process element 
processes n characters. If the suffix of the input string is 
matched to the prefix of substring, the process element 
processes n/2 characters on average. The performance 
degradation is shown in Figure 5. The malicious packet is rare 
in the whole network packets. Therefore, the performance of 
proposed string matching architecture shows nearly the same 
performance of the previous work. Thus, within the 5% of the 
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Figure 4.  The proposed string matching architecture with process element 
and alignment element 

 

Figure 5.  The performance degradation is respected to the probability of 
the matching target pattern occurrence 
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ratio, the proposed architecture can perform the string matching 
nearly n character per step with the process width n. 

IV. EXPERIMENTAL RESULTS 
 In this section, we compute the hardware cost of overall 

string matching architecture using the number of comparators 
that are the major component of the process element and the 
alignment element. Experiments are done using the rule set of 
Snort version 2.6[7], which is a well-known open source NIDS 
tool. We use the C++ standard library and boost graph 
library[8] to order the rule sets lexicographical and estimate the 
proposed and previous hardware cost. The identical patterns 
that have different layer 2-4 information, such as the source 
and destination IP address, is merged to one pattern.  

The experimental results are shown in Table 1. We 
represent the number of the alignment elements and the process 
elements in Table 1. Also, the reduction ratio of the number of 
comparators in comparison with the previous work is 
represented in Table 1. The number of comparators in proposed 
architecture includes the comparators in the process elements 
and the alignment elements. The reduction ration of the number 
of comparators(RRC) is computed by Equation (3). 

%100×
−

=
previous

proposedprevious

k
kk

RRC  (3) 
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In Table 1, when the process width increases, the RCC 
increases. The reason of the increase of the RCC is that the 
proposed process element has n comparators for process width 
n, while the previous process element has 2n comparators for 
process width n. Thus, the required comparators in the 
proposed process element increase linearly, but the required 
comparators in the previous process element increase 
exponentially. The experimental results show that 44.71% 
CRR with the process width 2 and 78.52% CRR with the 
process width 6. The requirement of the alignment element is 
equal to the number of the unique patterns in the rule set 
because one alignment element is needed to one unique pattern. 

V. CONCLUSION 
In this paper, we propose a hardware-efficient string 

matching architecture using the brute-force algorithm. The 
proposed architecture consists of the alignment elements and 
the process elements which have n comparators. Using the 
proposed process element with any process width, the required 
comparators are reduced in comparison with the previous work. 
Also, the performance of the proposed architecture is nearly 
equal to the previous work. Therefore, the proposed string 
matching architecture reduces the hardware cost with the same 
performance of the previous work. 
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TABLE I.  COMPARISON OF THE PREVIOUS AND THE PROPOSED STRING MATCHING ARCHITECTURE ACCORDING TO RULES FROM SNORT 2.6 

Rule Name 
# of 

alignment 
element 

n=2 n=3 n=4 n=5 n=6

# of PE RRC # of PE RRC # of PE RRC # of PE RRC # of PE RRC 

sql 74 576 43.58% 405 60.58% 307 68.97% 263 73.37% 219 77.70%

netbios 171 586 35.41% 455 54.14% 348 62.72% 324 69.44% 280 73.15% 

oracle 337 5,474 46.92% 3,716 63.64% 2,825 72.02% 2,277 77.04% 1942 80.44%

backdoor 955 4,666 39.77% 3,278 56.96% 2,564 65.69% 2,150 71.11% 1875 74.84%

web-client 1,657 33,871 47.55% 22,728 64.24% 17,088 72.58% 14,493 77.71% 11,498 80.93%

All 7,784 74,008 44.71% 50,692 61.55% 38,617 69.96% 32,397 75.19% 26,974 78.52%
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