

A Hardware-Efficent Multi-character String Matching
Architecture Using Brute-force Algorithm

Seongyong Ahn¹, Hyejong Hong¹, Hyunjin Kim¹, Jin-Ho Ahn², Dongmyong Baek³ and Sungho Kang¹
¹Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

²Department of Electronic Engineering, Hoseo University, Asan, Korea
³ Next Generation Ethernet Research Team, ETRI, Deajon, Korea

{sy_ahn,hjhong,nagicman}@soc.yonsei.ac.kr, jhahn@hoseo.edu, dongmbaek@etri.re.kr, shkang@yonsei.ac.kr

Abstract— Due to the growth of network environment
complexity, the necessity of packet payload inspection at
application layer is increased. String matching, which is critical
to network intrusions detection systems, inspects packet payloads
and detects malicious network attacks using a set of rules.
Because string matching is a computationally intensive task,
hardware based string matching is required. In this paper, we
propose a hardware-efficient string matching architecture using
the brute-force algorithm. A process element that organizes the
proposed architecture is optimized by reducing the number of
the comparators. The performance of the proposed architecture
is nearly equal to a previous work. The experimental results show
that the proposed architecture with any process width reduces
the comparator requirements in comparison with the previous
work.

Keywords: network intrusion detection system, deep packet
inspection, string matching, brute-force algorithm

I. INTRODUCTION
Contrary to traditional firewall, NIDS(Network Intrusion

Detection System) inspects the network packet payload at
application-layer and detects the malicious network packets.
Because of the growth of network environment complexity and
the ingenious network attacks, the efficient and effective
implementation of system is important. Especially, the string
matching that inspects the contents in network packet payload
determines the performance of NIDS. Thus, the network wire-
speed and the low cost implementation should be supported by
string matching. Because the software implementation of string
matching, such as the Boyer-Moore[1] and the Knuth-Morris-
Pratt[2] algorithms, cannot support the network wire speed, the
hardware implementation of string matching has many
researches lately.

The hardware implementation of the Aho-Corasick
algorithm[3] that is designed for multiple pattern matching
requires a lot of memories in order to store the all possible next
states for current state. The bit-split Aho-Corasick algorithm[4]
optimizes the Aho-Corasick algorithm by splitting the input
character. Although the bit-split Aho-Corasick algorithm
reduces the possible next state, the memory requirement is still
high. The bloom filter based string matching[5] has a more
efficient data structure than the memory based implementation.
However, to prevent the false positive error, it uses the hash
tables of the two levels. Also, the bloom filter requires the hash
table for each pattern length. Cho et.al.[6] uses the brute-force

algorithm. The brute-force based hardware organizes the
pattern using logic instead of memory. Therefore, string
matching using the brute-force based hardware supports high
speed of pattern matching but the hardware cost is high.

This paper proposes the hardware-efficient string matching
architecture using the brute-force algorithm. The proposed
string matching architecture reduces the requirement of the
comparators per process element while minimizing the
degradation of performance. The rest of paper is organized as
follows. In section 2, we briefly present the previous work. In
section 3, we describe the proposed string matching
architecture and the performance analysis. In section 4, the
comparison of our string matching architecture with the
previous work is shown. Finally, we conclude with a summary
of the proposed string matching architecture.

II. MULTI-CHARACTER PROCESSOR ARRAY
The brute-force algorithm has high speed string matching

performance, but it is targeted for single pattern matching. The
multi-character processor array method[6] using the brute-force
algorithm employs parallel set of process element chains for
multiple pattern matching. One process element chain handles
one pattern, and the set of process element chains process
multiple patterns parallel. Each process element in the process
element chain processes a substring of a pattern. The substring
is part of the pattern. Each pattern spilt into the multiple
substrings which have the length of process width, and
implemented by the process element chain which has multiple
substrings. The architecture of the process element that has
substring 'abc' and the chained process elements are shown in
Figure 1(a).

The process element with process width n in the previous
work processes n characters per step. In the multi-character
matching, all possible n cases should be matched by string
matching architecture. In other words, patterns can be found
anywhere in the input string. All possible cases for pattern 'abc'
are shown in Figure 1(b) and they should be found by the
process element with substring 'abc' in Figure 1(a). To find the
all possible cases in the multi-character matching, the previous
work stores the results of matching in (i-1) th step and
composes the results of matching in (i-1) th step and i th step
for matching of all the possible cases. The dotty lined box (1)
in the Figure 1(a) is the set of comparators that targets the input
string (case 2) in the Figure 1(b). In (i-1) th step, the matching

978-1-4244-5035-0/09/$26.00 ©2009 IEEE -464- ISOCC 2009

result of the pattern '*ab' is stored at register. In i th step, the
matching result of the pattern 'c**' and the matching result of
the previous step are ANDed. In the same way, the dotty lined
box (2) in the Figure 1(a) finds the input string (case 1) in the
Figure 1(b). Because the matching result of the substring is
transferred to next process element, the next substring can be
matched sequentially.

Since the previous work uses the set of comparators for
each pattern position, the hardware cost is high. Therefore, a
hardware-efficient architecture of multi-character processor
array is proposed in this paper. In our work, the process
element is optimized by reduction of the required comparators.
The alignment element is proposed for the matching of all the
possible input strings.

III. PROPOSED METHOD
In this section, we propose the hardware-efficient

architecture of process element. In the proposed architecture,
the comparators which detect partial matching of target
substring, such as (case 1) and (case 2) in Figure 1(b), are
eliminated from every process element. Instead, input string is
aligned by the alignment element which is added only to the
first process element of each process element chain. Although
the alignment element requires an additional step, the
performance degradation is not severe because the occurrence
of malicious packets is rare. The performance analysis is
described in the sub-section D.

A. Proposed Process Element
In previous work, process element uses 2n comparators for

matching n characters per step. When process width is
increased linearly, the number of comparators is increased
exponentially. To solve the hardware cost problem, the process
element which uses n comparators with process width n is
proposed in this paper. The architecture of proposed process
element with process width 3 is shown in Figure 2.

An enable signal is turn on/off the process element. A
match signal indicates whether input string is matched or
unmatched in the process element. The results of comparators
and the result of matching in prior process element are ANDed
and the ANDed signal activates the enable and match signals.
The enable and match signals of first process element are

always active. The enable and match signals are transferred to
next process element. By the transferring the enable signal, the
unnecessary computation is removed because all process
element is not always activated. If match signal is transferred to
the last process element, the final matching signal is activated.
Since the input string is transferred to the all process elements
concurrently, the string matching can be performed
continuously through the process elements.

B. Alignment element
The proposed process element removes the comparator

which detects fractions of target, such as (case 1) and (case 2)
in Figure 1(b). Thus the proposed process element cannot
search the pattern in the all the possible input strings. The
alignment element is proposed to solve the problem of the
multi-character matching. If the suffix of input string is
matched to the prefix of the matching target pattern, the
alignment element aligns input string. Consider the example in
Figure 3:

(1) In the case of input string '**a', the suffix of the input
string 'a' is matched to the prefix of the substring 'a'. The
matching in current process element is determined by the
matching results of next two characters of the input string. The
input string '**a' is shifted by the alignment element. In the
next step, the shifted input string ‘abc’ is compared to the
substring 'abc' in the process element.

(2) In the case of input string '*ab', the suffix of the input
string 'ab' is matched to the prefix of the substring 'ab'. The
matching in current process element is determined by the
matching results of next one characters of input string. The
input string '*ab' is shifted by the alignment element. In the
next step, the shifted pattern ‘abc’ is compared to the substring
'abc' in the process element.

(3) In the case of input string 'abc', the input string is
exactly matched to the substring in the process element. In the

Figure 1. The previous architecture of process element, chained process elements
and the three possible cases that should be matched by PE

Figure 2. The proposed architecture of process element

Figure 3. The example of string alignment using the proposed alignment
element

-465- ISOCC 2009

next step, the next n input string is compared to the substring in
the next process element.

The exact matching spends 1 step. But the partial matching
spends additional step for the alignment of the input string.
Therefore, the performance of string matching architecture is
affected by the number of the pattern alignments. In the
subsection D, we analyze the performance degradation in
comparison of the previous work.

One alignment element is needed to one pattern. The
alignment element handles partial matching of substring in the
first process element. Therefore, the required comparators per
alignment element increase as the process width increases. The
requirement of the comparators per alignment element is
represented by Equation (1). The function ƒ(n) indicates
requirement of the comparators per alignment element with the
process width n.

0)1(),1()1()(=−+−= fnfnnf (1)

C. Overall Architecture
The proposed string matching architecture consists of the

process elements and the alignment elements. The

�
�

�
�
�

�
widthprocess

lengthpatternetrgtamatchinga process elements and one

alignment element is needed for one target pattern. The process
element with process width n has n comparators and is chained.
When the substring in the process element is

}...{ 321 nnnnnp = and the process width n, the alignment
element consists of the sets of the comparators for

}{...,},...{},...{ 32321 nnn nnnnnnnn . The shift value of the input
pointer depends on the results of the shift encoder. The shift
encoder determines the MUX control signal for input pointer
using the results of the alignment element and the process
elements.

The proposed string matching architecture with process
width 3 is shown in Figure 4. The alignment element processes
'**a' and '*ab', prefixes of substring 'abc'. If '**a' is matched,

the input pointer shifts 2 characters. If '*ab' is matched, the
input pointer shifts 1 character. If 'abc' is matched, activated
match and enable signal are transferred to next process
element. If the match signal of the last process element is
activated, the string matching architecture reports the pattern
matching. The cases of the shift encoder as follow:

(1) 00: input string is not matched anywhere & input string
is matched in process element.

(2) 10: 1 character of suffix of input string is matched &
input string is not matched in process element.

(3) 01, 11: 2 characters of suffix of input string are matched
& input string is not matched in process element.

D. Performance Analysis
The previous process element processes deterministically n

characters per step. The reduction of the required comparators
per process element causes that the proposed architecture loses
the deterministic performance. In other words, when the partial
matching is occurred, the alignment element spends additional
1 step in order to align the pattern. In this case, the proposed
architecture could process fewer than n characters per step. In
this section, we analyze the performance of string matching
architecture mathematically.

When process width is n, the ratio of the matching target
pattern in the whole internet packet is m and the probabilities of
the each possible position of substring in the process element is
1/n equally, the performance of the proposed architecture is
Equation (2).

)1...211()1(n
nnn

mnm ×++×+×+×−

2
)1(nmnm ×+×−= (2)

If the input string is exactly matched, the process element
processes n characters. If the suffix of the input string is
matched to the prefix of substring, the process element
processes n/2 characters on average. The performance
degradation is shown in Figure 5. The malicious packet is rare
in the whole network packets. Therefore, the performance of
proposed string matching architecture shows nearly the same
performance of the previous work. Thus, within the 5% of the

b
a

Match

Enable

a

a

c
b

1 Match

Enable

Input Input

Final
Match

PE

Enable

PE

PE

Alignment Element

Shift Encoder

Figure 4. The proposed string matching architecture with process element
and alignment element

Figure 5. The performance degradation is respected to the probability of
the matching target pattern occurrence

-466- ISOCC 2009

ratio, the proposed architecture can perform the string matching
nearly n character per step with the process width n.

IV. EXPERIMENTAL RESULTS
 In this section, we compute the hardware cost of overall

string matching architecture using the number of comparators
that are the major component of the process element and the
alignment element. Experiments are done using the rule set of
Snort version 2.6[7], which is a well-known open source NIDS
tool. We use the C++ standard library and boost graph
library[8] to order the rule sets lexicographical and estimate the
proposed and previous hardware cost. The identical patterns
that have different layer 2-4 information, such as the source
and destination IP address, is merged to one pattern.

The experimental results are shown in Table 1. We
represent the number of the alignment elements and the process
elements in Table 1. Also, the reduction ratio of the number of
comparators in comparison with the previous work is
represented in Table 1. The number of comparators in proposed
architecture includes the comparators in the process elements
and the alignment elements. The reduction ration of the number
of comparators(RRC) is computed by Equation (3).

%100×
−

=
previous

proposedprevious

k
kk

RRC (3)

)#:(xinscomparatorofkx

In Table 1, when the process width increases, the RCC
increases. The reason of the increase of the RCC is that the
proposed process element has n comparators for process width
n, while the previous process element has 2n comparators for
process width n. Thus, the required comparators in the
proposed process element increase linearly, but the required
comparators in the previous process element increase
exponentially. The experimental results show that 44.71%
CRR with the process width 2 and 78.52% CRR with the
process width 6. The requirement of the alignment element is
equal to the number of the unique patterns in the rule set
because one alignment element is needed to one unique pattern.

V. CONCLUSION
In this paper, we propose a hardware-efficient string

matching architecture using the brute-force algorithm. The
proposed architecture consists of the alignment elements and
the process elements which have n comparators. Using the
proposed process element with any process width, the required
comparators are reduced in comparison with the previous work.
Also, the performance of the proposed architecture is nearly
equal to the previous work. Therefore, the proposed string
matching architecture reduces the hardware cost with the same
performance of the previous work.

ACKNOWLEDGMENT
This work was supported by the R&D program of

MKC/KEIT. [2009-S-043-01 Development of Scalable Micro
Flow Processing Technology]

REFERENCES
[1] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,”

Communication of the ACM, vol. 20, no. 10, pp.762–772, October 1997.
[2] D.E. Knuth, J.H. Morris and V.R. Pratt, “Fast pattern matching in

strings,” SIAM Jounal of Computing, vol. 6, no. 2, pp. 323–350, June
1977.

[3] A. Aho and M. Corasick, “Efficient string matching: An aid to
bibilographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–343, June 1975.

[4] L. Tan, B. Brotherton and T. Sherwood, “Bit-split string-matching
engines for intrusion detection and prevention,” ACM Trans. on
Architecture and Code Optimization, vol. 3, no. 1, pp. 3–34, March 2006.

[5] S. Dharmapurikar and J.W. Lockwood, "Fast and scalable pattern
matching for network intrusion detection systems," IEEE Journal on
Selected Area in Communications, vol. 24, no.10, pp.1781–1792,
October 2006.

[6] Y.K. Chang, M.L. Tsai and Y.R. Chung, “Multi-character processor
array for pattern matching in network intursion detection system,” Proc.
of Advanced Infromation Networking and Applications, pp. 991–996,
March 2008.

[7] Snort, intrusion detection system, Visist http://www.snort.org.
[8] Boost graph library, Visit http://www.boost.org.

TABLE I. COMPARISON OF THE PREVIOUS AND THE PROPOSED STRING MATCHING ARCHITECTURE ACCORDING TO RULES FROM SNORT 2.6

Rule Name
of

alignment
element

n=2 n=3 n=4 n=5 n=6

of PE RRC # of PE RRC # of PE RRC # of PE RRC # of PE RRC

sql 74 576 43.58% 405 60.58% 307 68.97% 263 73.37% 219 77.70%

netbios 171 586 35.41% 455 54.14% 348 62.72% 324 69.44% 280 73.15%

oracle 337 5,474 46.92% 3,716 63.64% 2,825 72.02% 2,277 77.04% 1942 80.44%

backdoor 955 4,666 39.77% 3,278 56.96% 2,564 65.69% 2,150 71.11% 1875 74.84%

web-client 1,657 33,871 47.55% 22,728 64.24% 17,088 72.58% 14,493 77.71% 11,498 80.93%

All 7,784 74,008 44.71% 50,692 61.55% 38,617 69.96% 32,397 75.19% 26,974 78.52%

-467- ISOCC 2009

	Main
	Information
	Papers
	Oral Session
	Session 1: Low-voltage Low-power RF CMOS Integrated Circuits and De-embedding Techniques
	[S1.1] A New 24/36-GHz Transceiver Architecture for 60-GHz Applications
	[S1.2] Reciprocal Noise Cancelling Low Power UWB LNA
	[S1.3] A Low Power UWB Direct Conversion Receiver with Pulse Detectors
	[S1.4] A Low-Voltage Fully-Integrated CMOS Power Amplifier for Mobile WiMAX Subscriber Station
	[S1.5] A CMOS Energy Efficient UWB Transmitter Module
	[S1.6] A Novel De-embedding Technique for On-Wafer Characterization of RF CMOS

	Session 2: Design Automation Techniques for SoC design
	[S2.1] Fixing Lithography Hotspots on Routing without Timing Discrepancy
	[S2.2] Design Automation of Pixel Control Block for Productivity Enhancement
	[S2.3] Automatic Clock Jitter Analysis Considering Clock Divider
	[S2.4] Design Techniques to Minimize the Yield Loss for General Purpose ASIC/SOC Devices
	[S2.5] [Invited] A Power-Constrained MPU Roadmap for the International Technology Roadmap for Semiconductors (ITRS)
	[S2.6] [Invited] Architectural-Level Prediction of Interconnect Wirelength and Fanout

	Session 3: H.264 Video compression architecture and design
	[S3.1] High Profile Intra Prediction Architecture for H.264
	[S3.2] An Implementation of Efficient SVC (Scalable Video Coding) Codec
	[S3.3] A High Speed Deblocking Filter Architecture for H.264/AVC
	[S3.4] A Memory Efficient Architecture of Deblocking Filter in H.264/AVC using Hybrid Processing Order
	[S3.5] A 360Mbin/s CABAC Decoder for H.264/AVC Level 5.1 Applications

	Session 4: Bio & Medical Devices
	[S4.1] [Invited, 30min] Error Tolerant DNA Self-Assembly by Link-Fracturing
	[S4.2] Design of Highly Programmable Bio-Impedance Measurement IC in 0.18μm CMOS
	[S4.3] A High Performance Current-Balancing Instrumentation Amplifier for ECG Monitoring Systems
	[S4.4] Capacitive Bio-Sensing
	[S4.5] A Universal Gate for Combinational Design of QCA Circuits

	Session 5: RF Circuits
	[S5.1] [Invited] Reconfigurable RF CMOS Circuit Design for Cognitive Radios
	[S5.2] [Invited] A Low-Cost, Multi-Standard ΔΣ Fractional-N Synthesizer Design for WiMAX/WLAN Applications
	[S5.3] Design of a 3.5-GHz OOK CMOS Transmitter with Triangular Pulse Shaping
	[S5.4] A Wideband CMOS LNA with Varactor Tuned Input Matching for WLAN/WiMAX Applications
	[S5.5] High Dynamic Range Power Regulator Design for UHF band Near-field Passive RFID Tag Chips

	Session 6: Testing and Verification
	[S6.1] Parallel Test Method for NoC-Based SoCs
	[S6.2] A BIST Architecture for Multiple DACs in an LTPS TFT-LCD Source Driver IC
	[S6.3] On-Chip Transaction Level Debug Support for System-on-Chips
	[S6.4] DFT for Achieving Hybrid Transiton Delay Fault Test with Reduced Pin Count Testing
	[S6.5] Case Studies with Process Analysis Toolkit (PAT)
	[S6.6] A Methodology for Timely Verification of a Complex SoC

	Session 7: Design Techniques for Multi-core and Embedded Systems
	[S7.1] [30min]Automatic Design Methodologies for MPSOC and Prototyping on Multi-FPGA Platforms
	[S7.2] [30min] Real-Time Power Management for a Multi-Performance Processor
	[S7.3] Effective Memory Access Optimization by Memory Delay Modeling, Memory Allocation, and Buffer Allocation
	[S7.4] [Invited] ALU-Array based Reconfigurable Accelerator for Energy Efficient Executions
	[S7.5] [Invited] Software Cache Support and API Design for Embedded DSP Processor

	Session 8: Advanced Design Methodologies and Characterization Strategies for Future Integrated Systems
	[S8.1] Skew Analysis and Design Methodologies for Improved Performance of Resonant Clocking
	[S8.2] Compressive Acquisition CMOS Image Sensor Using On-line Sorting Scheme
	[S8.3] A Practical Battery Charge/Discharge Simulator for Future Embedded Systems including Smart Grids
	[S8.4] Custom digital cell generation flow for 65nm processes
	[S8.5] Strategy to Detect Bug in Pre-silicon Phase
	[S8.6] A Novel Structure for Tunable Complex-Arithmetic Heterodyne Filters

	Session 9: Sensors and/for SoCs
	[S9.1] CMOS Image Sensor for Recording of Intrinsic-Optical-Signal of the Brain
	[S9.2] Cascaded Time Difference Amplifier using Differential Logic Delay Cell
	[S9.3] On-Chip Power Noise Measurements of High-Frequency CMOS Digital Circuits
	[S9.4] A Single-Chip Sensor Node LSI with Synchronous MAC Protocol and Divided Data-Buffer SRAM
	[S9.5] An SoC Platform with On-Chip Web Interface for In-Field Monitoring

	Session 10: Power Gating and Low-Power SoC Design
	[S10.1] Self-Retention of Data in Power-Gated Circuits
	[S10.2] Sleep Transistor Forward Body Bias: an Extra Knob to Lower Ground Bouncing Noise in MTCMOS Circuits
	[S10.3] SoC Power Off – Power Noise Analysis
	[S10.4] SRAM Core Modeling Methodology for Efficient Power Delivery Analysis
	[S10.5] Statistical Approach to Low Power and High Volume Pineview Atom-based SoC Design
	[S10.6] Incremental Register Placement for Low Power CTS

	Session 11: Embedded SW, Embedded memory
	[S11.1] Flexible Framework for Dynamic Management of Multi-Core Systems
	[S11.2] Software Development Tools for Streaming DSP Applications
	[S11.3] A Spectral-Based Partitioning Algorithm for Parallel LDPC Decoding on a Multiprocessor Platform
	[S11.4] An Advanced BIRA Using Parallel Sub-analyzers for Embedded Memories
	[S11.5] Modeling Power Consumption of Applications in Wireless Communication Devices Using OS Level Profiles

	Session 12: Design Techniques of SOC for Telecommunication
	[S12.1] A Novel Approach for Symbol-Rate Timing Recovery Based on Adaptive Interpolation
	[S12.2] A Novel Method for Estimation and Compensation of Transmitter I/Q Imbalance
	[S12.3] Design Consideration for the Compensation of Phase Noise in OFDM Systems
	[S12.4] Finite Word Length Analysis and Design Of Digital Automatic Gain Control System for Mobile TV Applications
	[S12.5] [Invited] Architecture of a Low-Power FPGA Based on Self-Adaptive Voltage Control
	[S12.6] [Invited] Design of a Fine-Grain Reconfigurable VLSI Based on Logic-In-Control Architecture

	Session 13: CAD
	[S13.1] [Invited] Accelerated Design of Analog, Mixed-Signal Circuits with FineSimTM and TitanTM
	[S13.2] [Invited] Chip Package-System Co-Design
	[S13.3] [Invited] Thermal Analysis on a two chip TSS
	[S13.4] [Invited] Advanced Static Verification for SoC Designs

	Session 14: Analog & Mixed Signal 1
	[S14.1] A Variation Tolerent Reconfigurable Time Difference Amplifier
	[S14.2] 12x12 Capacitive Matrix Touch Sensing Unit for SoC Application in 0.18um CMOS process.
	[S14.3] A 1-V Fully Differential Amplifier with Buffered Nested-Miller Compensation
	[S14.4] Low-Power Class-AB CMOS OTA with High Slew-Rate

	Session 15: Data Converters
	[S15.1] A Linearization Technique for Voltage-Controlled Oscillator-based ADC
	[S15.2] A Time-based Successive Approximation Register Analog-to-Digital Converter using a Pulse Width Modulation Technique with a Single Capacitor
	[S15.3] Design and Implementation of Flash ADC and DBNS FIR filter
	[S15.4] A 10b 100MS/s 25.2mW 0.18μm CMOS ADC With Various Circuit Sharing Techniques
	[S15.5] [Invited] Parasitic Calibration by Two-Step Ratio Approaching Technique for Split Capacitor Array SAR ADCs

	Session 16: Design Methodology
	[S16.1] NBC: Network-based Cache Coherence Protocol for Multistage NoCs
	[S16.2] Fast Architecture Exploration with Hierarchical Trace Simulations
	[S16.3] GA2CO: Peak Temperature Estimation of VLSI Circuits
	[S16.4] Methodology for the Efficient Use of Operands in the Design of Compound Instructions in ASIP
	[S16.5] An Area-efficient Built-in Redundancy Analysis for Embedded Memories with Optimal Repair Rate using 2-D Redundancy

	Session 17: SoC for Multimedia
	[S17.1] Implementation of H.264 Fractional Motion Estimation using Full Search Algorithm
	[S17.2] Efficient Integer Motion Estimation Algorithm using Sub-sampling
	[S17.3] Architecture Optimization for H.264/AVC Propagate Partial SAD Engine in HDTV Application
	[S17.4] Design of Area-efficient Unified Transform Circuit for Multi-standard Video Decoder
	[S17.5] Application-Specific Instruction Set Processor for H.264 On-Chip Encoder

	Session 18: Platforms and Design Tools for Automotive Systems
	[S18.1] Integrated Software Platform for Automotive Systems
	[S18.2] Co-simulation of Multi-ECU Hardware/Software System using Timing Back-annotation Method
	[S18.3] Hierarchical Scheduling for Integrating Real-time Applications with Interrupt Routines
	[S18.4] A Dynamic Reconfigurable Processor and a Design Tool for the Next Generation ECUs

	Session 19: Analog & Mixed Signal 2 (High Speed Signal Interface)
	[S19.1] [Invited] A Voltage-Controlled Capacitance Offset Calibration Technique for High Resolution Dynamic Comparator
	[S19.2] [Invited] High-Speed Robust Level Converter for Ultra-Low Power 0.6-V LSIs to 3.3-V I/O
	[S19.3] An Analytic Decision Method for the Feed-forward Equalizer Tap-Coefficients at Transmitter
	[S19.4] A 8.9mW 25Gb/s Inductorless 1:4 DEMUX in 90nm CMOS
	[S19.5] A CMOS 3.2 Gb/s 4-PAM Serial Link Transceiver
	[S19.6] A 36-Context Optically Reconfigurable Gate Array
	[S19.7] A Time-Spreading Calibration Technique for Multi-Bit/Stage Pipeline ADCs

	Session 20: DC/DC Converters, Signal Integrity
	[S20.1] Design of LDO Linear Regulator with Ultra Low-Output Impedance Buffer
	[S20.2] Design of the Dual Mode DC-DC Buck Converter using Low Power Control Method
	[S20.3] A 93.5% Efficiency, 400-mA Current-Mode DC-DC Buck Converter with Watchdog Functions
	[S20.4] SAT-Based State Encoding for Peak Current Minimization
	[S20.5] Fast Eye Diagram Determination for the Signal Integrity Verification of Frequency-Variant Transmission Lines
	[S20.6] Signal Integrity Verification of Coplanar Structures for Shielded On-Chip Interconnect Lines

	Session 21: Communication SoCs
	[S21.1] Simplified Soft-Decision Demapping Algorithm for DVB-S2
	[S21.2] A Synchronization Method for Crystal-Less OFDM-Based Wireless Body Area Network Applications
	[S21.3] High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-Massey Algorithm
	[S21.4] An NFC Transceiver using an Inductive Powered Receiver for Passive, Active, RW and RFID Modes
	[S21.5] Fiber Remote Configuration for an Optically Reconfigurable Gate Array
	[S21.6] A Hardware-Efficient Multi-character String Matching Architecture Using Brute-force Algorithm
	[S21.7] Synchronous Pipelined Two-Stage RADIX-4 200Mbps MB-OFDM UWB Viterbi Decoder ON FPGA

	Session 22: Low Power Design Techniques
	[S22.1] Adaptive Cache-Line Size Management on 3D Integrated Microprocessors
	[S22.2] Model Variable Reduction Technique for High-Level Energy Estimation with an Accuracy Constraint
	[S22.3] Pipeline Power Reduction through Single Comparator-based Clock Gating
	[S22.4] Novel RT Level Methodology for Low Power by Using Wasting Toggle Rate based Clock Gating
	[S22.5] An Adaptive Width Data Cache for Low Power Design
	[S22.6] Leakage Power Reduction of Functional Units in Processors having Zero-Overhead Loop Counter

	Poster Session
	[P.1] Compact 0.7-V CMOS voltage/current reference with 54/29-ppm/℃ temperature coefficient
	[P.2] Implementation of Current-to-Voltage Converter with Wide Dynamic Range and Its Application
	[P.3] Simple Synchronizer to Enhance Time Accuracy for Legacy Ethernet Applications
	[P.4] A 12-bit Cyclic ADC with Random Feedback Capacitor Interchanging Technique.
	[P.5] A 10b 1MS/s 0.5mW SAR ADC with Double Sampling Technique
	[P.6] LED Driver with Self-Optimized Channel Voltage; A Switch-Mode Voltage Regulator Optimizes an Active Current Regulator for a LED Drive
	[P.7] A Low-Power Programmable DLL-Based Clock Generator with Wide-Range Anti-harmonic Lock.
	[P.8] 900 MHz 2.2 mW Spread Spectrum Clock Generator based on Direct Frequency Synthesis and Harmonic Injection Locking
	[P.9] A 5.4Gbps/3.24Gbps Dual-rate CDR with Strengthened Up/Down Pulse Ratio
	[P.10] A High-Speed Differential Receiver with Low-Power Interleaved Direct Decision Feedback Equalizer
	[P.11] Design and Verification for Dual Issue Digital Signal Processor.
	[P.12] PLC Remote Debugger Development Using GDB
	[P.13] On-chip Current Sensing Circuit for Current-limited Minimum Off-time PFM Boost Converter
	[P.14] A Ring Oscillator-based Temperature Sensor for U-Healthcare in 0.13μm CMOS
	[P.15] Implementation of a LED Display System for High Quality Video Processing
	[P.16] Inter-Hierarchical Power Analysis Methodology to Reduce Multiple Orders of Magnitude Run-Time without Compromizing Accuracy
	[P.17] Hardware-Efficient Auto-Correlation for Synchronization of MIMO-OFDM WLAN Systems
	[P.18] Baseband Transceiver Chip for IR-UWB System
	[P.19] Low-Complexity Folded FIR Filter Architecture for ATSC DTV Tuner
	[P.20] 3D Graphics Cache System to Maximize Memory Utilization for an Embedded System
	[P.21] A Gate Delay Model Considering Temporal Proximity of Multiple Input Switching
	[P.22] A Smart CMOS Pixel Array for Real Time Detection of High Energy Particles

	Sponsors
	Search
	Help
	Exit

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

